Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA Scientists Study Effects of Rising Carbon Dioxide on Rangelands

04.08.2011
Rising carbon dioxide (CO2) levels can reverse the drying effects of predicted higher temperatures on semi-arid rangelands, according to a study published today in the scientific journal Nature by a team of U.S. Department of Agriculture (USDA) and university scientists.

Warmer temperatures increase water loss to the atmosphere, leading to drier soils. In contrast, higher CO2 levels cause leaf stomatal pores to partly close, lessening the amount of water vapor that escapes and the amount of water plants draw from soil.

This new study finds that CO2 does more to counterbalance warming-induced water loss than previously expected. In fact, simulations of levels of warming and CO2 predicted for later this century demonstrated no net change in soil water, and actually increased levels of plant growth for warm-season grasses.

"By combining higher temperatures with elevated CO2 levels in an experiment on actual rangeland, these researchers are developing the scientific knowledge base to help prepare managers of the world's rangelands for what is likely to happen as climate changes in the future," said Edward B. Knipling, administrator of the Agricultural Research Service (ARS), USDA's principal intramural scientific research agency.

The results cover the first four years of the eight-year Prairie Heating and CO2 Enrichment (PHACE) experiment on native northern mixed grass rangeland. The study is being conducted by the ARS Rangeland Resources Research Unit (RRRU) at the High Plains Grasslands Research Station near Cheyenne, Wyo.

ARS plant physiologist Jack Morgan leads the study, which uses both CO2 pipelines and thermal infrared heaters to simulate global warming conditions predicted for the end of the century: 600 parts per million (ppm) of CO2—compared to today's average 390 ppm—and day/night temperatures raised by 3 and 5 degrees Fahrenheit, respectively.

Based on these findings, warmer temperatures would likely play a role in changing the relative success of various grass types. "Only the warm-season grasses had their growth boosted higher by CO2 and warmer temperatures," Morgan said. "If this leads to a competitive advantage for warm-season grasses, it may increase the challenges faced by ranchers who desire cool-season grasses for early-season forage."

Elise Pendall and David Williams at the University of Wyoming at Laramie and Matthew Wallenstein at Colorado State University at Fort Collins also are participating in the study, which will be completed in 2013. Retired ARS soil scientist Bruce Kimball, designer of the infrared heater system, is helping conduct the study. Kimball serves as a research collaborator at the ARS U.S. Arid-Land Agricultural Research Center in Maricopa, Ariz.

Grass-dominated, dry rangelands account for approximately a third of the Earth's land surface, providing most of the forage eaten by livestock. This research, the first of its kind on this scale for rangelands, supports the USDA priority of helping farmers and ranchers throughout the United States and the rest of the world best adapt production practices to variable climate patterns.

Morgan said more research is needed to determine how the water-savings effect applies over the long run and in other types of semi-arid rangelands as well as to croplands in semi-arid areas. "It is important to understand that CO2 only offset the direct effects of warming on soil water in this experiment, and that it is unlikely to offset more severe drought due to combined warming and reduced precipitation projected for many regions of the world," he said.

In addition to ARS funding, the research is supported by grants from the National Science Foundation, the U.S. Department of Energy, and USDA's National Institute of Food and Agriculture.

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research CO2 CO2 levels Carbon agriculture dioxide warmer temperatures

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>