Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual feed supplement could ease greenhouse gassy cows

08.09.2010
Cow belches, a major source of greenhouse gases, could be decreased by an unusual feed supplement developed by a Penn State dairy scientist.

In a series of laboratory experiments and a live animal test, an oregano-based supplement not only decreased methane emissions in dairy cows by 40 percent, but also improved milk production, according to Alexander Hristov, an associate professor of dairy nutrition.

The natural methane-reduction supplement could lead to a cleaner environment and more productive dairy operations.

"Cattle are actually a major producer of methane gas and methane is a significant greenhouse gas," Hristov said. "In fact, worldwide, livestock emits 37 percent of anthropogenic methane."

Anthropegenic methane is methane produced by human activities, such as agriculture.

Compared to carbon dioxide, methane has 23 times the potential to create global warming, Hristov said. The Environmental Protection Agency bases the global warming potential of methane on the gas's absorption of infrared radiation, the spectral location of its absorbing wavelengths and the length of time methane remains in the atmosphere.

Methane production is a natural part of the digestive process of cows and other ruminants, such as bison, sheep and goats. When the cow digests food, bacteria in the rumen, the largest of the four-chambered stomach, break the material down intro nutrients in a fermentation process. Two of the byproducts of this fermentation are carbon dioxide and methane.

"Any cut in the methane emissions would be beneficial," Hristov said.

Experiments revealed another benefit of the gas-reducing supplement. It increased daily milk production by nearly three pounds of milk for each cow during the trials. The researcher anticipated the higher milk productivity from the herd.

"Since methane production is an energy loss for the animal, this isn't really a surprise," Hristov said. "If you decrease energy loss, the cows can use that energy for other processes, such as making milk."

Hristov said that finding a natural solution for methane reduction in cattle has taken him approximately six years. Natural methane reduction measures are preferable to current treatments, such as feed antibiotics.

Hristov first screened hundreds of essential oils, plants and various compounds in the laboratory before arriving at oregano as a possible solution. During the experiments, oregano consistently reduced methane without demonstrating any negative effects.

Following the laboratory experiments, Hristov conducted an experiment to study the effects of oregano on lactating cows at Penn State's dairy barns. He is currently conducting follow-up animal trials to verify the early findings and to further isolate specific compounds involved in the suppression of methane.

Hristov said that some compounds that are found in oregano, including carvacrol, geraniol and thymol, seem to play a more significant role in methane suppression.

Identifying the active compounds is important because pure compounds are easier to produce commercially and more economical for farmers to use.

"If the follow-up trials are successful, we will keep trying to identify the active compounds in oregano to produce purer products," said Hristov.

Hristov has filed a provisional patent for this work.

Matt Swayne | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>