Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding plant-soil interaction could lead to new ways to combat weeds

26.03.2014

Using high-powered DNA-based tools, a recent study at the University of Illinois identified soil microbes that negatively affect ragweed and provided a new understanding of the complex relationships going on beneath the soil surface between plants and microorganisms.

"Plant scientists have been studying plant-soil feedback for decades," said U of I microbial ecologist Tony Yannarell. "Some microbes are famous for their ability to change the soil, such as the microbes that are associated with legumes—we knew about those bacteria. But now we have the ability to use high-power DNA fingerprinting tools to look at all of the microbes in the soil, beyond just the ones we've known about. We were able to look at an entire microbial community and identify those microbes that both preferred ragweed and affected its growth."


Caption: This is some giant ragweed.

Credit: University of Illinois

Although it would seem that the logical conclusion would be to simply add anti-ragweed microbes to soil, Yannarell said that adding microbes to soil hasn't been successful in the past. An effective strategy, however, to suppress weeds might be to use plants that are known to attract the microbes that are bad for ragweed, and in so doing, encourage the growth of a microbial community that will kill it.

The study used Manhattan, Kan. (sunflower) and Urbana, Ill. (ragweed) and conducted trials independently at agricultural research facilities in Michigan, Illinois, Kansas, South Dakota, and Oregon, using local soils gathered on site. These particular weeds were selected because ragweed is a more common weed east of the Mississippi and sunflower is more common in the West.

The experiment allowed Yannarell and his colleagues to observe how three generations of ragweed and sunflower interacted with the microbial community in the soil. The plants interact with each other indirectly due to the differing effects they each have on the microbes in the soil.

"We used the same soil continuously so it had a chance to be changed," Yannarell said. "We let the plants do the manipulation."

Interestingly, they did not find the same ragweed-preferring microbe across all five states. "The microbial communities are different in each of these states, and yet we found the same overall patterns in each state individually," Yannarell said. Illinois, Oregon, Kansas, and South Dakota (and in about 50 percent of the data from Michigan) each had local microbes that preferred ragweed and had a negative effect on its growth. "That was a take-home lesson for me," he said, "that the actual organisms can be different in different locations, but they still may be performing the same functions."

Yannarell said that currently one of his graduate students is studying ways to use what they learned as a method for weed control. "What we're looking at now is the use of different cover crops, many of which are not harvested but just turned under into the soil," he said. "We're looking for specific cover crops that can make the microbial community bad for weeds as opposed to spraying. Can we create weed-suppressive soils?"

"An Affinity–Effect Relationship for Microbial Communities in Plant–Soil Feedback Loops" was published in the January 2014 issue of Microbial Biology. Others who contributed to the research are Yi Lou, Sharon A. Clay, Adam S. Davis, Anita Dille, Joel Felix, Analiza H.M. Ramirez, and Christy L. Sprague.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: Agricultural Dakota Environmental crops microbes microbial soils sunflower weeds

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>