Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK’s biggest ever Countryside Survey: Results published

20.11.2008
The results of the biggest and most comprehensive survey of Britain’s countryside and its natural resources are unveiled in a report published this week by the Countryside Survey partnership.

The results identify how the main features of the countryside have changed and include fields, woods, ponds, heath and moorland areas as well as linear features such as hedges and streams. They show how numbers of plant species have responded to changing land use, how habitat quality and vegetation condition has altered for key habitats and how Britain’s soils are recovering from the effects of acid pollutants.

Defra and the Natural Environment Research Council (NERC) commissioned the £10 million survey – the fifth since 1978 – on behalf of the partnership of governments, departments and agencies in the UK.

Environment Secretary Hilary Benn said:

“The countryside lies at the heart of our prosperity, health and well-being. We must ensure that the landscapes, wildlife and ecosystems that provide us with the essentials of life are not only looked after but are improved for future generations. The health of the countryside is increasingly affected by climate change, pollution and the demand for land, so it is vital that we improve our understanding of their impact. The UK Countryside Survey provides that understanding, the hard scientific evidence that we need.”

Professor Alan Thorpe, Chief Executive of NERC said:

“The changing ecology of the UK countryside is of growing scientific and political importance, driven by concerns about land use changes, climate change, increased flood risks and sustainable energy resources. Countryside Survey has provided us with a remarkably detailed 30-year record of where environmental changes have occurred. This is vital scientific evidence for policymakers and all those with interests in sustainable land management.”

A team of 80 specially trained scientists from the Centre for Ecology & Hydrology carried out the survey of 591 randomly selected one-kilometre square sites in England, Scotland and Wales during the summer of 2007. A complementary survey was carried out in Northern Ireland at the same time.

The scientists conducted an in-depth study of the habitats, soils and landscape features in each one-kilometre square, and recorded plants in a number of vegetation plots. For the first time they used specially developed electronic recording tools and web-enabled data systems to improve the efficiency of data collection Many of the same sites have been monitored for each survey since 1978, but additional sites have been added in each survey to improve estimates of change in specific geographical areas.

The data will help to answer questions about changes in the countryside, such as in the number of species on arable land, increases and decreases in numbers of particular plant species, the length and condition of hedgerows, the condition of freshwater habitats and the effects of air pollution on vegetation and soils. It provides scientific evidence that will be invaluable to government policymakers and land managers who need to make knowledge-based decisions about the countryside.

Dr Peter Carey from the Centre for Ecology & Hydrology and lead author of the Countryside Survey 2007 report, said:

"Not only has this been the biggest Countryside Survey to date, it has been very successful in spite of the challenges we faced during the extremely wet summer of 2007. The overriding message from the 2007 results is that previous intensive management of the countryside has relaxed over the last 30 years and particularly during the nine years since the last survey. The end result for biodiversity is a complex pattern of winners and losers. Countryside Survey results demonstrate how the vegetation, soils and freshwaters of the British countryside change over time in response to the way we use the land and also other factors such as pollution and weather patterns. "

Brief details of the headline results(1)

The area of arable land decreased by 9% between 1998 and 2007, mostly through conversion to grassland. The number of plant species found in arable fields increased by 30%, often associated with set-aside. The area of agricultural grassland increased between 1998 and 2007 but there was no change in the number of plant species found in grassland.

Common plant species that became more abundant since 1998 were Stinging Nettle, Hawthorn and Bramble, which all benefit from reduced management. Climbing species and species of unmanaged land were more frequent, species of wetland edges and short turf less frequent. Four of the most common non-native species became more frequent between 1998 and 2007

The total length of managed hedges decreased by 6% between 1998 and 2007, mostly through conversion to lines of trees and shrubs. About half (48%) of the managed hedges were classified as being in good structural condition in 2007.

The area of broadleaved woodland increased by 7% between 1998 and 2007. The number of plant species found in broadleaved woodlands did not change between 1998 and 2007, but a longer-term decrease of 7% was detected between 1990 and 2007.

The area of bracken decreased and acid grassland increased between 1998 and 2007. In England the area of heathland increased by 15% between 1998 and 2007. Heaths and bogs became more dominated by competitive grass species.

Headwater streams showed continued improvements in quality between 1998 and 2007. The number of ponds increased by 11% but their biological condition deteriorated between 1996 and 2007. Only 8% of ponds were found to be in good condition.

Soil (0-15cm) acidity decreased from 1978 to 2007 (GB) but further analyses are required to explore whether any of the variation in acidity can be interpreted as recovery from high levels of acid deposition. Changes in plant species due to nutrient enrichment, including affects of atmospheric pollution, have been seen in previous surveys but the signal is much less apparent between 1998 and 2007

There was no overall change in the average carbon concentration in soil (0-15cm) between 1978 and 2007. This is important because soils hold a large amount of carbon which if released to the atmosphere as carbon dioxide could contribute to climate change.

Since 1978, Countryside Survey has detected no changes in plant distribution or abundance that can be clearly attributed to long term climate change. Warmer and wetter conditions since 1978 seem to have favoured taller plant species and those preferring wetter conditions but no direct cause-and-effect relationship has yet been established.

Overall (when all vegetation sampling plots are analysed together) the species richness of plants growing in fields, woods, heaths and moors decreased by 8% between 1978 and 2007 although no decrease was recorded between 1998 and 2007.

More detailed results can be found in the headline summary and the main report, available at: www.countrysidesurvey.org.uk

(1) Note: unless otherwise stated these results relate to the UK or Great Britain. A further breakdown for England, Scotland and Wales will be available in Spring 2009.

Barnaby Smith | alfa
Further information:
http://www.countrysidesurvey.org.uk

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>