Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF Pine lsland pollen study leads to revision of state's ancient geography

03.03.2011
A new University of Florida study of 45-million-year-old pollen from Pine Island west of Fort Myers has led to a new understanding of the state's geologic history, showing Florida could be 10 million to 15 million years older than previously believed.

The discovery of land in Florida during the early Eocene opens the possibility for researchers to explore the existence of land animals at that time, including their adaptation, evolution and dispersal until the present.

Florida Museum of Natural History vertebrate paleontologist Jonathan Bloch, who was not involved in the current study, said he is especially interested in the finding and future related research.

"As a paleontologist who studies the evolution of mammals, my first question is 'OK, if there was land here at that time, what kinds of animals lived here?' " Bloch said. "Most of our current understanding of the evolution of early mammals comes from fossils discovered out west."

The study in the current issue of the journal Palynology by David Jarzen, a research scientist at the Florida Museum of Natural History on the UF campus, determined sediment collected from a deep injection well contained local, land-based pollen, disproving the popular belief Florida was underwater 45 million years ago during the early Eocene.

"When I got the sample, I could actually break it apart with my fingers," Jarzen said. "It wasn't just land, it was low-lying land with boggy conditions and near shore because it showed marine influence."

Until recently, Florida was believed to have been submerged until the Oligocene epoch, 23 million to 34 million years ago, Jarzen said. The 2010 study of the Pine Island sample from the Oldsmar Formation dates Florida's land from the early Eocene, about 10 million to 15 million years earlier than determined in a 2006 study of pollen and invertebrate fossils from the Avon Park Formation in west central Florida by Jarzen and former Florida Museum scientist David Dilcher.

"What we thought we knew was an incomplete body of information," said Fredrick Rich, a professor of geology in the department of geology and geography at Georgia Southern University. "Those terrestrial trees, shrubs and herbs didn't live out there all by themselves. I envision a small key, or maybe several small keys just like the islands in Florida Bay.

The study appears in the December 2010 edition of the bi-annual journal, which was distributed in January.

The sample of dark gray lignitic clay and limestone contained pollen from 17 different flowering plants, representing the earliest report of land vegetation to date. It was collected in 2004 by study co-author Curtis Klug, a hydrogeologist with Cardno Entrix, a Fort Myers-based natural resource management and environmental consulting company.

"As we're drilling through the rock and the cuttings come to the surface, we collect them, examine them, and determine the type of rock and its estimated age," Klug said. "As we were drilling, we did go through several lignites, but this was one of the thickest ones we found in this particular well."

The company was digging a 767-meter well for the Greater Pine Island Water Association, a company that uses reverse osmosis to produce drinking water. In this case, the well was used to dispose of excess saline brine, Klug said.

Lignite, also known as brown coal, is geologically younger than higher-grade coals and contains decomposed organic matter, largely plant material from wetlands. Along with the 17 land-based pollens, which included species of trees, palms and possibly ferns representing a climate similar to the panhandle today, the sample also contained at least four examples of marine phytoplankton. The presence of limestone and foraminiferas, single-celled organisms found in all marine environments, indicates the rise and fall of the area's sea level.

"Depending upon the anticipated uses of future injection wells, the developers might find it very interesting to know that what they will drill into is not likely to be simple and homogeneous," Rich said. "There is a buried landscape down there and the engineers need to know that is the case."Klug said the age of the sample was determined by analyzing the foraminiferas' carbonate shells and comparing the layer to sediments recovered from the same depth. "I think it's really very interesting," Klug said. "It's a preliminary study but what it shows I think is that the information is available for anybody who's willing to spend the time looking into it."

Pine Island was the site of a Calusa Indian village for more than 1,500 years and is important for research in archaeology and ecology. The Florida Museum maintains the Randell Research Center at Pineland, an archaeological site on the northwest part of the island.

"Our studies of environmental change at Pineland show that while sea level is rising very quickly today, water levels fluctuated up and down when the Calusa inhabited the area from AD 1 to 1700," said William Marquardt, Randell Center director and curator of archaeology at the Florida Museum. "Jarzen and Klug's new findings from the Eocene epoch may be suggesting something similar 35 million years ago – that there were fluctuations during the Eocene that periodically exposed land in Florida."

David Jarzen | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>