Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forest seed banks: a blast from the past

03.04.2009
Seeds of some tree species in the Panamanian tropical forest can survive for more than 30 years before germinating.

That is 10 times longer than most field botanists had believed.

Using the Lab's Center for Accelerator Mass Spectrometry to measure the amount of carbon 14 in seeds of the trees Croton billbergianus (Euphorbiaceae), Trema micrantha (Celtidaceae) and Zanthoxylum ekmannii ( Rutaceae), Lawrence Livermore National Laboratory scientist Tom Brown and University of Illinois at Urbana-Champaign colleague James Dalling found that seeds survived in the soil for 38, 31 and 18 years, respectively.

Previous demographic studies of pioneer tree species showed that seed persistence (the ability to survive in soil, awaiting favorable conditions for germination) is short, lasting only for a few years at most.

But in the tropical forests of Barro Colorado Island (BCI), Panama, Brown and Dalling found the seeds of some pioneer trees remain viable for many years.

“This is part of nature that wasn't really what people in the field thought was going on,” Brown said. “It turns out these seeds in soil just a few centimeters below the surface can survive a lot longer than anyone ever thought was possible.”

To increase the probability of encountering “old” seeds, Brown and Dalling used data from a forest plot to target sites in the forest occupied 20 years previously by species they suspected were capable of long-term persistence.

After Dalling germinated seeds extracting from surface soil layers at these sites, Brown carbon dated samples taken from the seed coat. However, unlike carbon dating techniques used by archeologists to estimate the age of objects from antiquity, he used a modern radiocarbon signal that is a consequence of atmospheric nuclear testing in the 1950s and early 1960s. The decline in radiocarbon concentration that has occurred since the test-ban treaty went into effect can be used as a signal to determine precisely when carbon became incorporated into plant tissue.

When disturbance kills canopy trees in tropical forest, light reaches the forest floor triggering the germination of seeds of pioneer tree species buried in the soil.

The age of these seeds, and thus the time that populations of pioneer species are able to survive between disturbance events, has long been open to question.

“This is a surprising result,” Dalling said. “Demographic models suggest that these species would not benefit from long persistence, and we doubted they would be able to survive anyway. Seeds dispersed onto the soil surface are prey to insect seed predators, and are exposed to an array of pathogens and decay organisms that proliferate in moist tropical soils.”

The results imply that buried seeds may be an important reservoir for genetic diversity in pioneer populations and may be as important as long distance dispersal in maintaining populations in fragmented habitats.

The research appears in the April edition of the journal, The American Naturalist.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>