Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees and climate change: Faster growth, lighter wood

14.08.2018

Trees are growing more rapidly due to climate change. This sounds like good news. After all, this means that trees are storing more carbon dioxide from the atmosphere in their wood and hence taking away the key ingredient in global warming. But is it that simple? A team from the Technical University of Munich (TUM) analyzed wood samples from the oldest existing experimental areas spanning a period of 150 years – and reached a surprising conclusion.

The team led by Hans Pretzsch, Professor for Forest Growth and Yield Science at the TUM, examined wood samples from several hundred trees and analyzed every single annual ring using a high-tech procedure — a total of 30,000 of them.


High-frequency probe of the LIGNOSTATION when scanning a wood sample.

Picture: P. Biber/ TUM

"The heart of the LIGNOSTATION is a high-frequency probe which scans each sample in steps of a hundredth of a millimeter", says Pretzsch, explaining the analysis procedure. "By doing so, we measure the specific weight of the wood with an accuracy and resolution which until recently was unthinkable."

The wood samples come from the oldest experimental forest plots in Europe which were created at the same time the TU Munich was founded 150 years ago. The samples were taken from common European tree species such as spruces, pines, beeches, and oaks. "We have detailed knowledge of the history of every single plot and tree", says Pretzsch. "This allows us to rule out the possibility that our findings could result from the forest being managed differently now as compared to a hundred years ago."

Climate change is making the wood lighter

With the combination of wood samples from the 1870s to the present day coupled with the latest measurement technology, the team at the School of Life Sciences Weihenstephan were able to demonstrate that the annually growing wood has gradually become lighter since observations began: By up to eight to twelve percent since 1900. Within the same period, the volume growth of the trees in central Europe has accelerated by 29 to one hundred percent.

In other words: Even though a greater volume of wood is being produced today, it now contains less material than just a few decades ago. However, the explanation which immediately comes to mind does not apply.

"Some people might now surmise that the more rapid growth could itself be the cause for our observations", says Dr. Peter Biber, co-author of the study — "In some tree species, it is in fact the case that wider annual rings also tend to have lighter wood. But we have taken this effect into account. The decrease in wood density we are talking about is due to other factors."

Instead, Pretzsch and his team see the causes as being the long-term increase in temperature due to climate change and the resulting lengthening of the vegetation period. But the nitrogen input from agriculture, traffic, and industry also play a part. A number of details lead experts to surmise this, such as the decrease in the density of late wood and the increase in the percentage of early wood in the annual rings.

Lighter wood – What's the problem?

Lighter wood is less solid and it has a lower calorific value. This is crucial for numerous application scenarios ranging from wood construction to energy production. Less solid wood in living trees also increases the risk of damage events such as breakage due to wind and snow in forests.

But the most important finding for practical and political aspects is that the current climate-relevant carbon sequestration of the forests is being overestimated as long as it is calculated with established but outdated wood densities. "The accelerated growth is still resulting in surplus carbon sequestration", says Pretzsch. "But scaling up for the forests of central Europe, the traditional estimate would be to high by about ten million metric tons of carbon per year."

More Information:
The research group at the Chair for Forest Growth and Yield Science at the TUM School of Life Sciences Weihenstephan led by Hans Pretzsch investigates the effect of climate change on the growth, stability, and vitality of trees. An important basis for this research are the experimental plots of the Chair, on which the dynamics of forests have been measured since 1879 to answer ecological and economic questions. In the study reported here, they contribute to measuring the human footprint in forest ecosystems.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hans Pretzsch
Technical University of Munich
Chair for Forest Growth
Phone: +49 (8161) 71 - 4710
Mail: hans.pretzsch@tum.de

Originalpublikation:

Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J. and Uhl, E.: Wood density reduced while wood volume growth accelerated in Central European forests since 1870, Forest Ecology and Management, Volume 429/2018. DOI: https://doi.org/10.1016/j.foreco.2018.07.045

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34892/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Forest Ecology TUM Trees Weihenstephan carbon sequestration forests tree species

More articles from Agricultural and Forestry Science:

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Scientists decode DNA secrets of world's toughest bean
09.07.2019 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>