No-till farming improves soil stability

The study was led by Humberto Blanco-Canqui at Kansas State University at Hays, Kan., and Maysoon Mikha at the ARS Central Great Plains Research Station in Akron, Colo. ARS researchers Joe Benjamin and Merle Vigil at Akron were part of the research team that studied four sites across the Great Plains: Akron; Hays and Tribune, Kan., and the University of Nebraska at Sidney.

No-till stores more soil carbon, which helps bind or glue soil particles together, making the first inch of topsoil two to seven times less vulnerable to the destructive force of raindrops than plowed soil.

The structure of these aggregates in the first inch of topsoil is the first line of defense against soil erosion by water or wind. Understanding the resistance of these aggregates to the erosive forces of wind and rain is critical to evaluating soil erodibility. This is especially important in semiarid regions such as the Great Plains, where low precipitation, high evaporation, and yield variability can interact with intensive tillage to alter aggregate properties and soil organic matter content.

Tillage makes soil less resistant to being broken apart by raindrops because the clumping is disrupted and soil organic matter is lost through oxidation when soil particles are exposed to air.

A paper on this research was published in a recent issue of the Soil Science Society of America Journal.

ARS is the principal intramural scientific research agency in the U.S. Department of Agriculture.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Media Contact

Don Comis EurekAlert!

More Information:

http://www.ars.usda.gov

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors