Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tennessee foresters helping to return chestnuts to American forests

28.09.2009
The American chestnut was a dominant species in eastern U.S.'s forests before a blight wiped it out in the early 1900s. Today it's being returned to the landscape thanks in part to work by a University of Tennessee Forestry alumna and the UT Tree Improvement Program (UT TIP).

Once used extensively for building, for tanning leather, as an important source of food for humans and wildlife, and even as nutritious fodder for hogs, the American chestnut seemed destined to be a memory—a line in a Christmas song. In a few years, the public should be able to once again enjoy the benefits of the forest giant.

UT alumna Stacy Clark, lead researcher with the U.S. Forest Service restoration project, believes the chestnut's revival will become one of the great stories of American conservation. Her work in cooperation with The American Chestnut Foundation (TACF) and the UT TIP has resulted in test plantings of blight-resistant trees in three southern National Forests. Planted over the winter, the young trees are 94 percent pure American chestnuts. But the remaining 6 percent has blight resistance derived from the Chinese chestnut tree.

Simply planting a Chinese chestnut wouldn't solve the problem, Clark said.
"The American chestnut grows straight and tall, is highly valuable, and has highly flavored edible nuts," she said. "All that differs from the Chinese. We want the trees to look and act like an American chestnut. But they have to have the resistance genes from Chinese chestnut. That's the only way they're going to survive."

The young trees appear healthy and are growing well, but results from tree experiments come slowly, even for a fast-growth tree like the chestnut.

"We'll know in about five years whether or not the trees will be successful in early establishment," she said. "In 10 to 15 years we will know about blight resistance. It takes 10 to 15 years to get significant mast and another 15 years to get harvestable wood."

Making the resistant tree available to the public will take longer still.

"These plantings are not the final answer. We need several more experiments to really test the Foundation's breeding lines and blight resistance."

TACF, which provided the hybrid stock, has produced multiple lines of blight-resistant seedlings. In 2010, partners will plant an additional 900 to 1,000 seedlings of the American chestnut in national forests in Tennessee and Virginia. Plantings will include all generations of the American chestnut—approximately 700 will be blight-resistant.

"We really want to test which are the best families. All that will take many, many years. I'll be retired, probably, before that is done."

Clark works closely with Dr. Scott Schlarbaum, director of UT's 50-year-old Tree Improvement Program. UT TIP provided the necessary infrastructure for the Forestry Service to implement nursery and field studies of chestnut material. UT TIP has provided technical assistance to develop the experimental designs for testing, and they will assist the Forest Service in monitoring the research. They have also provided an avenue for partnerships with state forestry divisions for nursery research.

"Keeping track of the genetic identity of a tree from nursery into the field is a tremendous task," Clark said. "UT has a well-developed program in hardwood seedling restoration. We can tap into that expertise."

Though her work will help re-establish a tree with significant forest and economic potential for Tennessee and other southern states, the long-term influence will go much further.

"The biggest impact is to provide a road map for other species. Many trees have exotic pest concerns. This project provides hope for those other species. If we are successful, this will be one of the greatest triumphs in the history of forest conservation."

Contacts:

Dr. Scott Schlarbaum, UT Department of Forestry, Wildlife and Fisheries, 865-974-7993

Margot Emery, UTIA Marketing & Communications Services, 865-974-7141, memery@tennessee.edu

Margot Emery | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Agricultural and Forestry Science:

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht How the forest copes with the summer heat
29.08.2018 | Universität Basel

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>