Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking Plant Biology from the Classroom to the Internet

29.04.2009
A new article assesses the effectiveness of a new online course in the Plant Biology Department at Arizona State University, which was designed as a way for non-majors to fulfill their natural science requirement. The course, which students rated very highly, features written and animated materials to teach topics such as plant growth and their contribution to the biosphere.

Over the past decade, the use of online courses in post-secondary education has gone from an experiment to an all out explosion, as institutions look at new ways to engage their students.

Studies have shown these courses can have positive effects on students’ learning, problem-solving skills, and critical-thinking skills. Recently, a partnership between instructors in the Plant Biology Department and multimedia designers at Arizona State University has developed an extensive website designed for a course in plant biology.

As a fulfillment of the natural science requirement at Arizona State University, this internet-based biology course for nonmajors, called Concepts in Plant Biology, helps students explore how plants live, grow, and reproduce; plant diversity; plants’ contribution to the biosphere; and their relevance to human life. An evaluation has been published in the Journal of Natural Resources and Life Sciences Education.

The objectives of the course are to provide an introduction to the fundamental behavior of matter and energy as related to plants and their role in the biosphere, as well as to teach students how plants function and how they can be utilized to address global problems such as hunger, pollution, and global warming. An asynchronous strategy towards teaching was developed to meet the needs of students who were reluctant to enroll, either due to scheduling constraints or a more general intimidation of science curriculum.

The course creation was divided into two stages: an 18-month long planning phase followed by a 12-month design and development phase. During the planning phase, the creation of a website with multimedia learning modules was selected due to its flexibility, the ability to track data on student usage, and the ability to update. Faculty served as the supervisors for the design phase of the project. They were responsible for the course outline and written content, and also identified concepts to be animated.

A diversity of programs was utilized to create the website content. These included Flash animations to illustrate processes such as the carbon cycle, global warming, and how enzymes work; Director-Shockwave drag-and-drop exercises to engage students in the discovery process, as well as to test their understanding; and QuickTime videos, which were used in multiple ways, including demonstrating cellular activity, and illustrating plant growth through time-lapsed photography. At the end of the design and development phase of the project, an instructional website was created with 259 content pages, including 237 illustrations and images, 124 interactive animations and 11 videos.

The lecture content was transformed from a traditional on-campus lecture to a distance education website for use both as a stand-alone course and as an adjunct to the on-campus course. A total of 109 students surveyed in three separate years rated the course on a scale of 1 to 5, with 1 being very poor and 5 being very good, and the mean score as a whole was 4.16. Ninety-eight percent of the students said they would take another online course.

Several difficulties were encountered in the implementation of the web course. Some students had difficulty down-loading the large file sizes of audio and video components, as no minimum specifications for computer hardware, software, and internet access speed were required for students to enroll. In addition, obtaining funding to edit and improve the site has been difficult, which is an essential component of the interactive tools provided by the site.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/pdf/2009/E08-0003n.pdf. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>