Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tahitian vanilla originated in Maya forests, says UC Riverside botanist

26.08.2008
Team led by Pesach Lubinsky identifies enigmatic orchid’s origins; traces its Pacific voyage via Spanish and French trading ships

The origin of the Tahitian vanilla orchid, whose cured fruit is the source of the rare and highly esteemed gourmet French Polynesian spice, has long eluded botanists. Known by the scientific name Vanilla tahitensis, Tahitian vanilla is found to exist only in cultivation; natural, wild populations of the orchid have never been encountered.

Now, a team of investigators led by Pesach Lubinsky, a postdoctoral researcher with Norman Ellstrand, a professor of genetics in UC Riverside's Department of Botany and Plant Sciences, claims to have traced Tahitian vanilla back to its true origins.

In the August issue of the American Journal of Botany, Lubinsky and colleagues use genetic and ethnohistoric analysis to argue that Tahitian vanilla began its evolutionary journey as a pre-Columbian Maya cultivar inside the tropical forests of Guatemala.

"All the evidence points in the same direction," Lubinsky said. "Our DNA analysis corroborates what the historical sources say, namely, that vanilla was a trade item brought to Tahiti by French sailors in the mid-19th century. The French Admiral responsible for introducing vanilla to Tahiti, Alphonse Hamelin, used vanilla cuttings from the Philippines. The historical record tells us that vanilla – which isn't native to the Philippines – was previously introduced to the region via the Manila Galleon trade from the New World, and specifically from Guatemala."

The Manila galleons (1565-1815) were Spanish trading ships that sailed once or twice each year across the Pacific Ocean between Manila in the Philippines and Acapulco, Mexico. The ships brought Chinese porcelain, silk, ivory, spices, and other exotic goods to Mexico in exchange for New World silver.

The genetic data Lubinsky and his colleagues obtained confirmed that the closest relatives to Tahitian vanilla, from among 40 different Vanilla species they analyzed from across the world, were two species that grow naturally only in the tropical forests of Central America: Vanilla planifolia and Vanilla odorata. V. planifolia is also the primary species cultivated for commercial vanilla, and is grown principally in Madagascar and Indonesia. V. odorata has never been cultivated.

Yet, even with this initial genetic data, the researchers faced a conundrum. They could find no Tahitian vanilla growing wild in Guatemala, which is where its closest relatives grew. The researchers decided to give their genetic data a second look. This time, by comparing patterns of relatedness in DNA sequences from both the nucleus and the chloroplast (a plant cell's photosynthetic factory), they discovered that Tahitian vanilla fit the pattern of being a hybrid offspring between V. planifolia and V. odorata.

"And that's where the Maya cultivators come in," Lubinsky explained. "The pre-Columbian Maya had been managing their forests for millennia to cultivate cacao and to make chocolate, and we know they were also cultivating vanilla to use it as a chocolate spice. The Maya created these forest gardens by introducing different types of species of wild cacao and vanilla from the surrounding forests, which meant that species that had previously been geographically separated were then able to hybridize because they were in the same place. That's the scenario we present in our research paper for how Tahitian vanilla got started. It is an evolutionary product, but also a Maya artifact."

Seung-Chul Kim, an assistant professor of systematics in the Department of Botany and Plant Sciences and a coauthor on the research paper, served as an advisor to Lubinsky on the project.

"Pesach has demonstrated that Vanilla species can exchange genes quite frequently across species barriers," Kim said. "This provides an opportunity to breed new commercial varieties of vanilla through hybridization in the future."

Lubinsky, Kim and their colleagues plan to do further research on vanilla. In January 2009, they will begin mapping cacao-vanilla forest gardens in Belize, southern Mexico and Guatemala. They also are actively advising on sustainable agricultural development projects using vanilla in Mexico and Belize, and have plans to assemble a vanilla germplasm collection.

Lubinsky and Kim were joined in the research by Kenneth M. Cameron of the University of Wisconsin, Madison, Wis.; María Carmen Molina of Escuela Superior de Ciencias Experimentales y Tecnología, Móstoles, Spain; Maurice Wong and Sandra Lepers-Andrzejewski of the Etablissement Vanille de Tahiti, French Polynesia; and Arturo Gómez-Pompa of the Universidad Veracruzana, Veracruz, Mexico. A UCR professor emeritus of botany who was named a University Professor, Gómez-Pompa is now the director of the Universidad Veracruzana's Centro de Investigaciones Tropicales (Center of Tropical Research or CITRO). He also served as Lubinsky's advisor on the research project.

The research was funded by the Graduate Research Fellowship Program of the National Science Foundation; the University of California Institute for Mexico and the United States (UC MEXUS); a University of California Office of the President Pacific Rim mini-grant; and UCR's Department of Botany and Plant Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>