Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweeping Study of U.S. Farm Data Shows Loss of Crop Diversity the Past 34 Years

18.09.2015

Researchers say diverse agroecosystems are more resilient to variable weather from climate change.

U.S. farmers are growing fewer types of crops than they were 34 years ago, which could have implications for how farms fare as changes to the climate evolve, according to a large-scale study by Kansas State University, North Dakota State University and the U.S. Department of Agriculture. Less crop diversity may also be impacting the general ecosystem.


A study by Kansas State University, the U.S. Department of Agriculture and North Dakota State University examined crop diversity data from Farm Resource Regions developed by the USDA Economic Research Service.

“At the national level, crop diversity declined over the period we analyzed,” said Jonathan Aguilar, K-State water resources engineer and lead researcher on the study.

The scientists used data from the USDA’s U.S. Census of Agriculture, which is published every five years from information provided by U.S. farmers. The team studied data from 1978 through 2012 across the country’s contiguous states.

Croplands comprise about 408 million acres (165 million hectares) or 22 percent of the total land base in the lower 48 states, so changes in crop species diversity could have a substantial impact, not only on agroecosystem function, but also the function of surrounding natural and urban areas. Because croplands are typically replanted annually, theoretically crop species diversity can change fairly rapidly. There is the potential for swift positive change, unlike in natural ecosystems.

Aguilar began the study while working as a researcher with the USDA’s Agricultural Research Service. He joined K-State Research and Extension, a part of the university, in 2012. The study was conducted in collaboration with a diverse team, including rangelands expert John Hendrickson, USDA-ARS; weeds experts Greta Gramig, NDSU, and Frank Forcella, USDA-ARS; agricultural economics expert David Archer, USDA-ARS; and soils expert Mark Liebig, USDA-ARS.

“At the very simplistic level,” Aguilar said, “crop diversity is a measure of how many crops in an area could possibly work together to resist, address and adjust to potential widespread crop failures, including natural problems such as pests and diseases, weed pressures, droughts and flood events. This could also be viewed as a way to spread potential risks to a producer. Just like in the natural landscape, areas with high diversity tend to be more resilient to external pressures than are areas with low diversity. In other words, diversity provides stability in an area to assure food sustainability.”

The study is the first to quantify crop species diversity in the U.S. using an extensive database over a relatively long period of analysis, Aguilar said.

The results of the effort, partially funded by the K-State Open Access Fund, were published Aug. 26, 2015, in the scientific journal PLOS One.

Farm resource regions

In addition to the national trend, the researchers studied regional trends by examining county-level data from areas called Farm Resource Regions developed by the USDA’s Economic Research Service. Although the study showed that crop diversity declined nationally, it wasn’t uniform in all regions or in all states.

“There seem to be more dynamics going on in some regions or states,” Aguilar said, noting that not all of the factors affecting those regional trends are clear.

For instance, the Heartland Resource Region, which is home to 22 percent of U.S. farms and represents the highest value, 23 percent, of U.S. production, had the lowest crop diversity. This region comprises Illinois, Iowa, Indiana and parts of Ohio, Missouri, Minnesota, South Dakota, Nebraska and Kentucky.

In contrast to all of the other regions, the Mississippi Portal Region, which includes parts of Louisiana, Mississippi, Kentucky and Arkansas, had significantly higher crop diversity in 2012 than in 1978.

While overall, the national trend was toward less crop diversity, the region called the Fruitful Rim (parts of Washington, Oregon, Idaho, California, Arizona, Texas, Florida, Georgia and South Carolina) and the Northern Crescent (states along the northeast border from part of Minnesota east through Wisconsin, Michigan through to Maine and south to New Jersey and Pennsylvania) had the most crop diversity.

The data used was specific enough that the researchers were able to quantify crop diversity and trends even down to the county level.

“A significant trend of more counties shifting to lower rather than higher crop diversity was detected,” the team wrote in the study results. “The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem services associated with agricultural systems as well as food system sustainability. “

Implications for agriculture and the environment

“Biodiversity is important to the ecosystem function,” the researchers wrote. “Biodiversity in agricultural systems is linked to critical ecological processes such as nutrient and water cycling, pest and disease regulation, and degradation of toxic compounds such as pesticides. Diverse agroecosystems are more resilient to variable weather resulting from climate change and often hold the greatest potential for such benefits as natural pest control.”

A classic example where high crop diversity could have been crucial was during the corn leaf blight epidemic in the 1970s, Aguilar said.

During the 20th century, increases in the value of human labor, changes in agricultural policies and the development of agricultural technologies led to increased specialization and scale of production. Economic and social factors helped drive the adoption of less-diverse cropping systems.

“An important consequence of increased crop homogeneity is the potential for yield instability with anticipated increased unpredictability in weather patterns linked to climate change. Diverse cropping systems tend to increase farmers’ chances of encountering favorable conditions while decreasing the probability of widespread crop failures,” the team wrote, citing a study based on long-term data collected in Ontario, Canada.

A simple example would be if a farmer planted part of his acreage to sorghum and the rest to corn. If the growing season was unusually dry and the farmer didn’t irrigate, the sorghum would likely fare better, because it’s more drought tolerant than corn. In that example, the farmer has come out better by having diverse crop species than if he had planted all of his acreage to corn, in which case he may have had low or non-existent yields.

Next steps

In addition to quantifying the changes in crop diversity, Aguilar said, the scientists hoped to spur further studies and research with regard to changing agricultural condition and status.

“The factors that affect crop diversity in North Dakota do not necessarily apply to what is happening here in Kansas. This study also has relevance to other agronomic and environmental issues,” he said, adding that the research has already generated inquiries from scientists who are studying weed resistance to herbicides, honeybee “friendliness” of the landscape and agricultural community resilience to pressures such as climate change.

Contact Information
Jonathan Aguilar – 620-275-9164 or jaguilar@ksu.edu;

Mary Lou Peter - mlpeter@ksu.edu

Jonathan Aguilar | newswise
Further information:
http://www.ksu.edu

Further reports about: Ecosystem Sweeping crop crop diversity crop species farmer species diversity

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Switch2save: smart windows and glass façades for highly efficient energy management

15.10.2019 | Architecture and Construction

Bayreuth researchers discover stable high-energy material

15.10.2019 | Materials Sciences

Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project

15.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>