Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Strategy Aims to Reduce Agricultural Ammonia Emissions

13.05.2011
As concerns about air pollution from large dairies and other concentrated animal feeding operations (CAFOs) continue to mount, scientists are reporting a practice that could cut emissions of an exceptionally abundant agricultural gas—ammonia—by up to 30%.

In the May-June 2011 issue of the Journal of Environmental Quality, a team led by Mark Powell, a soil scientist with the USDA Agricultural Research Service’s U.S. Dairy Forage Research Center in Madison, WI, describes how natural plant compounds known as tannins can reduce both the amount of nitrogen cows excrete in urine, and the action of a microbial enzyme in manure that converts the nitrogen into ammonia on the barn floor.

The U.S. EPA already monitors ammonia emissions from large animal operations under the “Superfund” act, and in April a coalition of citizen groups petitioned the agency to begin regulating ammonia under the Clean Air Act, as well. Besides its pungent smell, ammonia that volatilizes from cattle manure is highly reactive in the atmosphere, forming particulates that travel long distances and contribute to environmental problems such as acid rain, nutrient pollution, and smog.

Feeding tannins to cattle could not only help dairy farmers reduce these impacts and meet regulatory standards, Powell says, but tannins could also boost nitrogen use efficiency in cows, thereby decreasing the need for expensive protein supplements. Only 20 to 35% of feed nitrogen ends up in milk on commercial dairy farms, with the remainder excreted about equally in manure and urine as the compound, urea.

Urea is produced when nitrogen-rich proteins break down mainly in the cow rumen, forming ammonia gas that’s eventually converted to urea before being excreted. Tannins are thought to cut urea production by somehow allowing more protein to escape digestion in the rumen and enter the cow intestine, where it’s used more efficiently to produce milk protein.

Tannins are perhaps best known for their role in leather tanning, but Powell began investigating them in ruminant feed more than two decades ago in West Africa. In the communities where he worked, tannin-rich shrubs were grown as windbreaks, and to amend the soil and feed livestock. Tannins in the diets of cattle, sheep and goats are in fact well-studied in the tropics, where the vegetation tends to be naturally higher in the astringent plant chemicals, Powell explains. “But tannin research, in terms of ruminant nutrition, is relatively new in temperate environments.”

In the new study, Powell and dairy scientists from the University of Wisconsin-Madison fed tannin extracts from red quebracho and chestnut trees to dairy cows that also received two concentrations of crude protein: a low level of 15.5% protein, and a higher one of 16.8%. What they found is that dietary tannin cut ammonia emissions from the cows’ manure by an average of 30% at the low protein level, 16% at the high level, or 23% overall. In other words, cows that consumed tannin expelled significantly less urea, thus making less available for conversion to ammonia.

But a drop in urea production wasn’t the only effect. To his surprise, Powell discovered that tannins also appear to inhibit urease, the enzyme that converts urea to ammonia. Urease activity in the feces of tannin-fed cows was significantly lower than in the feces of control animals, resulting in an 11% drop in emitted ammonia—or one-third of tannin’s total impact on emissions at the high protein level. And when the researchers applied tannin directly to manure on the barn floor (rather than feeding it to cows), the effect was even greater: Ammonia emissions declined by nearly 20%.

The tannin sources investigated in the study are already approved for animal feed, and “the levels we used amount to pennies per cow per day,” Powell says, suggesting they could offer a cost-effective means to cut ammonia losses from the barn floor, as well as from manure that’s applied to farm fields as fertilizer. Powell is now working with chemists to determine exactly which compounds in the tannin mixtures produce the effect, with an eye toward manufacturing a synthetic substitute later on.

In the meantime, he has set his sights on another important air pollutant that is prodigiously produced by cows. “We have another experiment looking at higher doses of tannin in dairy cattle,” he says. “We want to see if it can reduce methane emissions.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/3/907.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>