Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special Delivery: Nematode-infected Insect Cadavers

23.11.2011
A custom-made machine for packaging mealworms infected with beneficial nematodes could improve the delivery, timing and use of the wormlike organisms as biological control agents.

The machine is the result of a cooperative research and development agreement involving U.S. Department of Agriculture (USDA) scientists and Southeastern Insectaries, Inc., of Perry, Ga.

The Heterorhabditis and Steinernema nematodes being used can infect and kill a wide array of insect crop pests, including Japanese beetles, vine weevils, root borers and fungus gnats. About 10 years ago, entomologist David Shapiro-Ilan and colleagues with USDA's Agricultural Research Service (ARS) and Virginia Polytechnic Institute and State University showed that the nematodes performed best when applied in the dead bodies of the insect hosts used to mass-produce them. Pest control is then achieved by the nematode progeny that emerge from the insect cadavers. ARS is USDA's principal intramural scientific research agency.

A technical hurdle that's kept the insect-cadaver approach from gaining widespread commercial acceptance is the tendency of some commonly used host insects to rupture or stick together during storage, transport and application.

Southeastern Insectaries owner Louis Tedders came up with a solution, namely, packaging the insects in masking tape. He also devised a prototype device to automate the process, which ARS scientists Juan Morales-Ramos and Guadalupe Rojas in Stoneville, Miss., subsequently refined.

Using off-the-shelf parts, for example, they built a device to mechanically sort mealworms by size, with the biggest ones chosen for placement in shallow dishes where nematodes could infect them. After a few days, a mechanical arm reaches in and places the dead, infected mealworms between strips of masking tape at the rate of one insect every two seconds. Eventually, an entire roll is formed, allowing for easy storage, transport and application to pest-infested soils.

Shapiro-Ilan's laboratory tests of the insect-cadaver taping system showed no adverse effects on the nematodes' survival and pest-control ability. Indeed, 15 days after application, nematodes from the taped cadavers killed up to 78 percent of small hive beetles and 91 percent of root weevils used in the tests.

Read more about this research in the November-December 2011 issue of Agricultural Research magazine.

Jan Suszkiw | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Researchers double sorghum grain yield to improve food supply
31.10.2019 | Cold Spring Harbor Laboratory

nachricht Game changer: New chemical keeps plants plump
25.10.2019 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>