Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern pine beetle impacts on forest ecosystems

18.05.2012
Shortleaf pine-hardwood ecosystem restoration following insect outbreak

Research by USDA Forest Service Southern Research Station (SRS) scientists shows that the impacts of recent outbreaks of southern pine beetle further degraded shortleaf pine-hardwood forest ecosystems in the southern Appalachian region. The authors suggest that cutting and burning these sites reduces heavy fuel loads, improves soil nutrient status, and opens the canopy for restoration of these shortleaf pine communities.

In an article published in the June issue of journal Forest Ecology and Management, research ecologist Katherine Elliott and fellow scientists from the SRS Coweeta Hydrologic Laboratory examine the effects of three treatments to restore shortleaf pine-hardwood forests in areas where southern pine beetle attacks have killed most of the overstory pines.

Historically, frequent fire maintained the pine-hardwood ecosystems of the southern Appalachians as open grassy savannas with widely spaced oaks and shortleaf pines, a grassy understory, and relatively clear midstory. The interactions of past land use, fire exclusion, drought, and southern pine beetle outbreaks have severely impacted these ecosystems.

"Over the past century, these ecosystems have been on a trajectory of increased loss of pines in the overstory, lack of regeneration of both pines and oaks, loss of ground layer plants, and the expansion of the evergreen shrub mountain laurel in the midstory," says Elliott. "The latest outbreak of southern pine beetle, a native insect, killed more overstory pines, further damaging the ecosystem while adding fuel for fire."

For the study, the researchers selected eight 12 to 15-acre study sites in pine-hardwood ecosystems where a large number of the pines had been killed by southern pine beetle. They tested the effects of burning only, cutting and burning on sites with droughty soils, and cutting and burning on sites with medium soil moisture. Two years after the treatments, they reported increased soil nutrient availability, greater herbaceous plant cover and diversity, and more native bluestem grasses.

Unfortunately, they found only a few pine seedlings in the understory after the treatments. "In our study, poor pine regeneration may have been due to drought, poor seed production, and hardwood competition in the understory," says Elliott. "Poor seed production was not unexpected, since southern pine beetles killed almost all of the overstory pines before the treatments."

The researchers found that though oak regeneration increased on all the burned sites, other hardwood species increased as well. The researchers suggest that without further intervention, oaks will not succeed into the overstory due to competition from faster growing hardwoods.

This study showed that cutting followed by prescribed fire can reduce fuel loads, increase soil nutrient availability, open the canopy by reducing trees in the overstory, and stimulate vegetative growth. These cut-and-burn treatments have positioned these degraded ecosystems on a restoration trajectory.

"Further silvicultural treatments are needed to fully restore these sites to shortleaf pine/bluestem communities," says Elliott. "Additional follow-up treatments could include planting pine seedlings, using thinning or herbicides to reduce competition from faster growing red maple and sassafras sprouts and shrubs, and repeated burning to maintain open woodland for native grass and other plant cover."

"Land managers need information on treatment options that will reduce the heavy fuel from dead and dying trees, and they need information on how to most effectively restore these forests," says Elliott. "We will continue to work with land managers on applying and refining these treatments in their efforts to fully restore shortleaf pine/native bluestem grass ecosystems."

"Without the partnership and support from the National Forests of North Carolina, Tennessee, and Georgia this research would not be possible or as relevant," she adds. "For this study, the Ocoee Ranger District, Cherokee National Forest was responsible for implementing the treatments and they worked closely with the researchers to make it all happen." In return, researchers provide the information to the National Forest partners and others by onsite tours and workshops.

This research was partially funded by the Joint Fire Science Program, which supports scientific research on wildland fires and distributes results to help policymakers, fire managers and practitioners make sound decisions.

Access the full text of the article: http://www.srs.fs.usda.gov/pubs/40511

For more information: Katherine Elliot at 828-524-2128, x110 or kelliot@fs.fed.us

Headquartered in Asheville, N.C., the Southern Research Station is comprised of more than 120 scientists and several hundred support staff who conduct natural resource research in 20 locations across 13 southern states (Virginia to Texas). The Station's mission is "…to create the science and technology needed to sustain and enhance southern forest ecosystems and the benefits they provide." Learn more about the Southern Research Station at: http://www.srs.fs.usda.gov/

Katherine Elliot | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>