Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shade-coffee farms support native bees that help maintain genetic diversity in remnant tropical forests

27.07.2010
Shade-grown coffee farms support native bees that help maintain the health of some of the world's most biodiverse tropical regions, according to a study by a University of Michigan biologist and a colleague at the University of California, Berkeley.

The study suggests that by pollinating native trees on shade-coffee farms and adjacent patches of forest, the bees help preserve the genetic diversity of remnant native-tree populations. The study was published online Monday in the Proceedings of the National Academy of Sciences.

"A concern in tropical agriculture areas is that increasingly fragmented landscapes isolate native plant populations, eventually leading to lower genetic diversity," said Christopher Dick, a U-M assistant professor of ecology and evolutionary biology. "But this study shows that specialized native bees help enhance the fecundity and the genetic diversity of remnant native trees, which could serve as reservoirs for future forest regeneration."

An estimated 32.1 million acres of tropical forest are destroyed each year by the expansion of cropland, pasture and logging. Often grown adjacent to remnant forest patches, coffee crops cover more than 27 million acres of land in many of the world's most biodiverse regions.

Over the last three decades, many Latin American coffee farmers have abandoned traditional shade-growing techniques, in which plants are grown beneath a diverse canopy of trees. In an effort to increase production, much of the acreage has been converted to "sun coffee," which involves thinning or removing the canopy.

Previous studies have demonstrated that shade-grown farms boost biodiversity by providing a haven for migratory birds, nonmigratory bats and other beneficial creatures. Shade-coffee farms also require far less synthetic fertilizer, pesticides and herbicides than sun-coffee plantations.

In the latest study, U-M's Dick and UC-Berkeley's Shalene Jha investigated the role of native bees that pollinate native trees in and around shade-grown coffee farms in the highlands of southern Chiapas, Mexico. In their study area, tropical forest now represents less than 10 percent of the land cover.

Jha and Dick wanted to determine the degree to which native bees, which forage for pollen and nectar and pollinate trees in the process, facilitate gene flow between the remnant forest and adjacent shade-coffee farms.

They focused on Miconia affinis, a small, native understory tree that many farmers allow to invade shade-coffee farms because the trees help control soil erosion.

M. affinis, commonly known as the saquiyac tree, is pollinated by an unusual method known as buzz pollination. In order to release pollen from the tree's flowers, bees grab hold and vibrate their flight muscles, shaking the pollen free. Non-native Africanized honeybees don't perform buzz pollination, but many native bees do.

"Our focus on a buzz-pollinated tree allowed us to exclude Africanized honeybees and highlight the role of native bees as both pollinators and vectors of gene flow in the shade-coffee landscape mosaic," said Jha, a postdoctoral fellow at UC-Berkeley who conducted the research while earning her doctorate at U-M.

Jha and Dick combined field observations with seed-parentage genetic analysis of Miconia affinis. They found that trees growing on shade-coffee farms received bee-delivered pollen from twice as many donor trees as M. affinis trees growing in the adjacent remnant forest. The higher number of pollen donors translates into greater genetic diversity among the offspring of the shade-farm trees.

Seed parentage analysis revealed that pollen from forest trees sired 65.1 percent of the seeds sampled from M. affinis trees growing in a shade-coffee habitat. That finding demonstrates that native bees are promoting gene flow between the remnant forest and the coffee farms—bridging the two habitat types—and that the shade-farm trees serve as a repository of local M. affinis genetic diversity, according to the authors.

In addition, Jha and Dick found that native bees carried pollen twice as far in a shade-coffee habitat than they did in the forest. They documented shade-farm pollination trips of nearly a mile, which are among the longest precisely recorded pollination trips by native tropical bees.

Jha and Dick said their results likely apply to other buzz-pollinated plants, which represent about 8 percent of the world's flowering plant species, as well as to other native plants whose limited pollen and nectar rewards don't attract honeybees.

The enhanced genetic diversity of the shade-farm trees could provide a reservoir for future forest regeneration, as the coffee farms typically fall out of production in less than a century. Given that potential, along with the shade farm's previously identified roles in connecting habitat patches and sheltering native wildlife, it is important to encourage this traditional style of agriculture, Jha and Dick said.

The project was supported by the Helen Olson Brower Fellowship at the University of Michigan and by the National Science Foundation.

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>