Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Semi-Dwarf” Trees May Enable a Green Revolution for Some Forest Crops

01.10.2012
The same “green revolution” concepts that have revolutionized crop agriculture and helped to feed billions of people around the world may now offer similar potential in forestry, scientists say, with benefits for wood, biomass production, drought stress and even greenhouse gas mitigation.

Researchers at Oregon State University recently outlined the latest findings on reduced height growth in trees through genetic modification, and concluded that several advantageous growth traits could be achieved for short-rotation forestry, bioenergy, or more efficient water use in a drier, future climate.

This approach runs contrary to conventional wisdom and centuries of tree breeding, which tried to produce forest trees that grow larger and taller, the researchers note. But just as the green revolution in agriculture helped crops such as wheat and rice produce more food on smaller, sturdier plants, the opportunities in forestry could be significant.

“Research now makes it clear that genetic modification of height growth is achievable,” said Steven Strauss, an OSU professor of forest genetics. “We understand the genes and hormones that control growth not only in crop plants, but also in trees. They are largely the same.”

In a study published in Plant Physiology, researchers inserted a number of genes into poplar trees, a species often used for genetic experiments, and valuable for wood, environmental and energy purposes. They described 29 genetic traits that were affected, including growth rate, biomass production, branching, water-use efficiency, and root structure. All of the changes were from modified gibberellins, plant hormones that influence several aspects of growth and development.

The range and variation in genetic modification can be accurately observed and selected for, based on hormone and gene expression levels, to allow production of trees of almost any height.

For example, for ornamental purposes it would be possible to grow a miniature poplar, or even a Douglas-fir, as a potted plant.

And because height growth, in competition for sunlight, is a primary mechanism that trees use to compete for survival, there would be reduced concern about use of such genetically modified trees in a natural environment. On a long-term basis they would be unable to compete, shaded by larger trees and ultimately they would die out.

Scientists could also produce trees that might have a larger root mass, which should make them more drought-resistant, increase water use efficiency, increase elimination of soil toxins and better sequester carbon. This could be useful for greenhouse gas mitigation, bioremediation or erosion control.

Smaller trees could also be selected that have sturdier trunks for some uses in short-rotation plantation forestry, significantly reducing the number of trees blown down by wind. And shorter, thicker and straighter trunks might create higher-value wood products in many tree species, Strauss said.

Some semi-dwarf trees produced by conventional tree breeding techniques are already an important part of the horticulture industry, allowing easier harvesting of fruit and higher yields. Genetic modification could add new characteristics and more scientific precision to the process, researchers said.

“The main limitation is the onerous regulatory structure for genetically-modified plants in the United States,” Strauss said. “Even short, safe and beneficial trees are unlikely to be able to bear the high costs and red tape inherent to obtaining regulatory approval.”

This research has been supported by the U.S. Department of Energy, U.S. Department of Agriculture, National Science Foundation, and industry members of the Tree Biosafety and Genomics Research Cooperative at OSU.

Steven Strauss
Professor of Forest Genetics
Oregon State University
541-737-6578
steve.strauss@oregonstate.

Steven Strauss | Newswise Science News
Further information:
http://www.oregonstate.edu

Further reports about: Green IT OSU Trees crop plant crops genetic modification plant hormone poplar tree

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>