Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists enhance color and texture of cultured meat

23.10.2019

Cultured meat could reduce resources required in meat production, with a smaller environmental footprint relative to animal farming

A team of Tufts University-led researchers exploring the development of cultured meat found that the addition of the iron-carrying protein myoglobin improves the growth, texture and color of bovine muscle grown from cells in culture. This development is a step toward the ultimate goal of growing meat from livestock animal cells for human consumption.


Bovine skeletal muscle cells grown in the presence of myoglobin (center) or hemoglobin (right)

Credit: Robin Simsa & David Kaplan, Tufts University

The researchers found that myoglobin increased the proliferation and metabolic activity of bovine muscle satellite cells. Addition of either myoglobin or hemoglobin also led to a change of color more comparable to beef. The results, published today in FOODS, indicate potential benefits of adding heme proteins to cell media to improve the color and texture of cell-grown meat.

"Taste, color, and texture will be critical to consumer acceptance of cultured meat," said David Kaplan, Stern Family Professor of Engineering at the Tufts University School of Engineering and corresponding author of the study.

"If our goal is to make something similar to a steak, we need to find the right conditions for cells to grow that replicate the formation of natural muscle. The addition of myoglobin looks to be one more important addition to the recipe that brings us closer to that goal," added Kaplan, chair of the Department of Biomedical Engineering and a program faculty member at the Sackler School of Graduate Biomedical Sciences at Tufts.

The rationale for developing cultured meat (also referred to as 'lab-grown meat', 'cellular agriculture' or 'cell-based meat') is the potential to reduce the amount of resources required in meat production, as well as significantly shrink its environmental footprint relative to animal farming.

Animal farming has been associated with greenhouse gas emissions, antibiotic resistance problems, animal welfare concerns, and land use issues, such as the clearing of the Amazon rainforests.

The ability to grow cultured meat in a bioreactor, as in tissue engineering, could potentially alleviate these issues. However, much remains to be done to grow the cells in a way that replicates the texture, color and flavor of naturally derived meat.

Plant-based meat substitutes like the Impossible Burger have incorporated heme proteins from soy, which make the product more meat-like in appearance and taste. The Tufts-led research team hypothesized that adding heme proteins to meat cell culture could not only have a similar effect but also could improve the growth of muscle cells which require the heme proteins to thrive.

Myoglobin is a natural component of muscle, and hemoglobin is found in blood. As heme proteins, both carry iron atoms that are responsible for the natural bloody, slightly 'metallic' taste of beef. The researchers found that adding hemoglobin or myoglobin changes the color of the bioartificial muscle to a reddish-brown meat-like hue. Myoglobin, however, was much better for promoting cell proliferation and differentiation of the BSCs to mature muscle cells, and better at helping the cells form fibers and adding a rich meat-like color.

"We knew that myoglobin has an important role to play in muscle growth, as it is one of the most abundant proteins in muscle cells" said first author of the study Robin Simsa, an industrial Ph.D. student from Europe who conducted the studies during his fellowship stay at the Tufts University School of Engineering.

"It's possible that myoglobin is bringing oxygen to the cell's mitochondria, boosting their energy and helping them to proliferate. More than just an ingredient for color, iron content and potentially flavor, myoglobin could also be an important element in the scaled-up production of cell-based meat to increase cell yield."

###

Other authors contributing to the study include John Yuen, Andrew Stout and Natalie Rubio, all graduate students at the Tufts University School of Engineering and working on cellular agriculture goals; and Per Fogelstrand of the University of Gothenburg, Sweden, the PI supervisor for Robin Simsa.

This work was supported by the National Institutes of Health (#P41EB002520) and New Harvest. Simsa was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant #722779, conducted within the "Training 4 Cell Regenerative Medicine" (T4CRM) network. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Simsa, R., Yuen, J., Stout, A., Rubio, N., Fogelstrand, P., and Kaplan DL. "The role of extracellular hemoglobin and myoglobin in cell-based meat development" FOODS 2019, 8(10), 521, DOI: 10.3390/foods8100521

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsPR

http://www.tufts.edu 

Mike Silver | EurekAlert!
Further information:
http://dx.doi.org/10.3390/foods8100521

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>