Scientists closer to developing salt-tolerant crops

The research team – based at the University of Adelaide's Waite Campus in Australia – has used a new GM technique to contain salt in parts of the plant where it does less damage.

Salinity affects agriculture worldwide, which means the results of this research could impact on world food production and security.

The work has been led by researchers from the Australian Centre for Plant Functional Genomics and the University of Adelaide's School of Agriculture, Food and Wine, in collaboration with scientists from the Department of Plant Sciences at the University of Cambridge, UK.

The results of their work are published today in the top international plant science journal, 'The Plant Cell'.

“Salinity affects the growth of plants worldwide, particularly in irrigated land where one third of the world's food is produced. And it is a problem that is only going to get worse, as pressure to use less water increases and quality of water decreases,” says the team's leader, Professor Mark Tester, from the School of Agriculture, Food and Wine at the University of Adelaide and the Australian Centre for Plant Functional Genomics (ACPFG).

“Helping plants to withstand this salty onslaught will have a significant impact on world food production.”

Professor Tester says his team used the technique to keep salt – as sodium ions (Na+) – out of the leaves of a model plant species. The researchers modified genes specifically around the plant's water conducting pipes (xylem) so that salt is removed from the transpiration stream before it gets to the shoot.

“This reduces the amount of toxic Na+ building up in the shoot and so increases the plant's tolerance to salinity,” Professor Tester says.

“In doing this, we've enhanced a process used naturally by plants to minimize the movement of Na+ to the shoot. We've used genetic modification to amplify the process, helping plants to do what they already do – but to do it much better.”

The team is now in the process of transferring this technology to crops such as rice, wheat and barley.

“Our results in rice already look very promising,” Professor Tester says.

Media Contact

Prof Mark Tester EurekAlert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors