Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists alarmed by bark beetle boom

01.07.2019

Bark beetles are currently responsible for killing an unprecedented number of trees in forests across Europe and North America. Why the beetle populations first explode to decline naturally after a few years is largely unknown. Researchers are therefore urging to step up research into the dynamics of bark beetle populations. They believe that more needs to be done also in view of climate change.

"Bark beetles lay waste to forests" – "Climate change sends beetles into overdrive" – "Bark beetles: can the spruce be saved?": These newspaper headlines of the past weeks covered the explosive growth of bark beetle populations and its devastating impact on timberlands.


The European spruce bark beetle is a formidable insect in German timberlands. The bark beetle species is capable of killing large spruce populations in a short period of time.

Photo: Rainer Simonis/Bavarian Forest National Park


Bark beetles do not cause damages in natural forests such as the Bavarian Forest National Park. It is the ideal environment for scientists to study the insects.

Photo: Rainer Simonis/Bavarian Forest National Park

The problem is not limited to Germany. A comparable situation is encountered in many forests across Central Europe and North America. The consequences of this major infestation are massive: In 2018, the beetles were responsible for ruining around 40 million cubic metres of wood just in Central Europe.

Mass outbreaks of bark beetles usually last a couple of months to years and are followed by sudden declines in the beetle populations. Little is known about this natural phenomenon. In the current issue of the scientific journal Trends in Ecology and Evolution, researchers are therefore calling to step up research into the life cycle of the harmful insects.

"We have taken a number of elaborate measures to protect our forests against bark beetles. But we still know very little about what triggers the variations in bark beetle populations," says Peter Biedermann, the lead author of the recently published study.

Biedermann is a researcher at the Department of Animal Ecology and Tropical Biology of the University of Würzburg. Together with colleagues from the Max Planck Institute for Chemical Ecology in Jena and the Bavarian Forest National Park, who contributed to the study, he therefore demands: "It is an urgency to create the scientific foundation now to enable forestry officials and politicians to respond more efficiently to bark beetle outbreaks in the future."

The results from these studies could serve as blueprints to fight other harmful insect pests plaguing forests. According to Biedermann, the most important question is whether it might be a practicable approach in natural forests or timberlands to just do nothing in the event of a population boom of insect pests. Scientists in the Bavarian Forest National Park have observed that bark beetle populations collapsed after a few years when no counter-measures were taken.

Climate change exacerbates the problem

The scientists believe that more needs to be known about the life cycle particularly of the spruce bark beetle also in view of the climate crisis. "The expected increases in the frequency and intensity of extreme weather events will additionally weaken German timberlands.

Therefore, we will have to be prepared to tackle growing problems with the spruce bark beetle," says Jörg Müller, a professor at the Department of Animal Ecology and Tropical Biology at the University of Würzburg and Deputy Manager of the Bavarian Forest National Park.

Higher temperatures and intensifying summer droughts put trees and especially spruces under great pressure. Spruces are originally from mountain regions and it was only when they were widely planted out of economic interest that the conifer species also populated lower elevations.

Spruces are not very resistant to heat and drought. Long-term water shortage weakens the tree's defences against the bark beetle – chemical substances that harm the beetles and increased resin release which clogs up the beetle tunnels.

There are countless factors that influence the population size of insects such as the bark beetle. Natural enemies, pathogens, interspecific and intraspecific competition, landscape structures, tree population, resilience of the preferred host, temperature and precipitation. According to Jörg Müller, it is largely unknown which role each factor plays in the population dynamics of forest insects.

To remedy this lack of knowledge, the scientists suggest pooling the worldwide data, identifying knowledge gaps on the population dynamics of spruce bark beetles and other forest insects and using this as the basis to answer key questions on the interaction of various factors through new data surveys. In a second step, the insights gleaned from the results will be tested during experimental field studies to derive recommendations for action.

Support is crucial

The scientists believe that support from forestry officials and public bodies as well as funding are essential. In their view, this support is necessary to achieve the ambitious goal of shedding light on the population development of bark beetles and other forest insects. This new approach could contribute to initiating efficient pest control management in forests.

Wissenschaftliche Ansprechpartner:

Dr. Peter Biedermann, Department of Animal Ecology and Tropical Biology, T: +49 931 31-89589, peter.biedermann@uni-wuerzburg.de

Originalpublikation:

Bark beetle population dynamics in the Anthropocene: challenges and solutions. Peter H. W. Biedermann, Jörg Müller, Jean-Claude Grégoire, Axel Gruppe, Jonas Hagge, Almuth Hammerbacher, Richard W. Hofstetter, Dineshkumar Kandasamy, Miroslav Kolarik, Martin Kostovcik, Paal Krokene, Aurélien Sallé, Diana L. Six, Tabea Turrini, Dan Vanderpool, Michael Wingfield and Claus Bässler. Trends in Ecology and Evolution. DOI: 10.1016/j.tree.2019.06.002

Weitere Informationen:

http://www.insect-fungus.com

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Agricultural and Forestry Science:

nachricht Scientists discover how plants breathe -- and how humans shaped their 'lungs'
27.06.2019 | University of Sheffield

nachricht 'Sneezing' plants contribute to disease proliferation
24.06.2019 | Virginia Tech

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Scientists alarmed by bark beetle boom

01.07.2019 | Agricultural and Forestry Science

Pharmaconutrition‒Modern drug design for functional studies

01.07.2019 | Life Sciences

Researchers teleport information within a diamond

28.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>