Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt-tolerant crops show higher capacity for carbon fixation

13.12.2011
Tomato, watermelon prove most efficient at CO2 accumulation

Salt can have drastic effects on the growth and yield of horticultural crops; studies have estimated that salinity renders an about one-third of the world's irrigated land unsuitable for crop production.

Imbalances in soil salinity can cause ion toxicity, osmotic stress, mineral deficiencies, and drastic physiological and biochemical changes in plants. Salt stress can even cause plants to adjust their water usage—to conserve water, some plants close their stomata, thus restricting the entry of carbon dioxide (CO2) into the leaf and reducing photosynthesis.

One solution to salinity issues has been to boost the salt tolerance of conventional crops and plants, but resulting gain in crop yield has traditionally been low. To better understand the behavior of salt-tolerant and -sensitive plants in challenging situations, scientists performed a comparative study of carbon fixation by different plant species under conditions of salinity. Tomato, lettuce, pepper, melon, and watermelon were tested in a greenhouse in southeast Spain. The net photosynthetic rate, gS, and transpiration rate of the plants were measured at atmospheric CO2 during the daytime and were related to the total chlorophyll, carbon, and mineral contents of each species.

According to the research study (HortScience), melon or pepper crops showed significantly lower photosynthetic rates when they were grown in saline conditions. The total chlorophyll content and carbon percentage were also lower in the salinity-treated plants of melon and pepper. Treated lettuce plants showed a significant decrease in photosynthetic rates and chlorophyll content, but there were no differences in carbon content. "On the other hand, there were no significant differences in the values of total chlorophyll content, photosynthetic rate, or carbon content for tomato and watermelon plants when control and salt-treated plants were compared", the report said. The mineral composition data showed greater increases of sodium in both roots and leaves of melon and pepper when plants were treated with NaCl compared with the rest of the species.

"Almost all of the results obtained showed that lettuce, pepper, and melon are less adapted to saline conditions and that these crops seem to be less efficient in CO2 fixation and, therefore, have less capacity for carbon accumulation", noted corresponding author Micaela Carvajal. "We concluded that the species more tolerant of saline conditions (tomato and watermelon) showed a higher capacity for fixation of atmospheric CO2 than the sensitive species (lettuce, melon, and pepper). These results seem to be related to the capacity of each species to maintain the photosynthetic processes and gS in stressing situations."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/12/1798

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ASHS CO2 HortScience Horticultural Science SALT atmospheric CO2 salt-tolerant

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>