Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt-tolerant crops show higher capacity for carbon fixation

13.12.2011
Tomato, watermelon prove most efficient at CO2 accumulation

Salt can have drastic effects on the growth and yield of horticultural crops; studies have estimated that salinity renders an about one-third of the world's irrigated land unsuitable for crop production.

Imbalances in soil salinity can cause ion toxicity, osmotic stress, mineral deficiencies, and drastic physiological and biochemical changes in plants. Salt stress can even cause plants to adjust their water usage—to conserve water, some plants close their stomata, thus restricting the entry of carbon dioxide (CO2) into the leaf and reducing photosynthesis.

One solution to salinity issues has been to boost the salt tolerance of conventional crops and plants, but resulting gain in crop yield has traditionally been low. To better understand the behavior of salt-tolerant and -sensitive plants in challenging situations, scientists performed a comparative study of carbon fixation by different plant species under conditions of salinity. Tomato, lettuce, pepper, melon, and watermelon were tested in a greenhouse in southeast Spain. The net photosynthetic rate, gS, and transpiration rate of the plants were measured at atmospheric CO2 during the daytime and were related to the total chlorophyll, carbon, and mineral contents of each species.

According to the research study (HortScience), melon or pepper crops showed significantly lower photosynthetic rates when they were grown in saline conditions. The total chlorophyll content and carbon percentage were also lower in the salinity-treated plants of melon and pepper. Treated lettuce plants showed a significant decrease in photosynthetic rates and chlorophyll content, but there were no differences in carbon content. "On the other hand, there were no significant differences in the values of total chlorophyll content, photosynthetic rate, or carbon content for tomato and watermelon plants when control and salt-treated plants were compared", the report said. The mineral composition data showed greater increases of sodium in both roots and leaves of melon and pepper when plants were treated with NaCl compared with the rest of the species.

"Almost all of the results obtained showed that lettuce, pepper, and melon are less adapted to saline conditions and that these crops seem to be less efficient in CO2 fixation and, therefore, have less capacity for carbon accumulation", noted corresponding author Micaela Carvajal. "We concluded that the species more tolerant of saline conditions (tomato and watermelon) showed a higher capacity for fixation of atmospheric CO2 than the sensitive species (lettuce, melon, and pepper). These results seem to be related to the capacity of each species to maintain the photosynthetic processes and gS in stressing situations."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/12/1798

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ASHS CO2 HortScience Horticultural Science SALT atmospheric CO2 salt-tolerant

More articles from Agricultural and Forestry Science:

nachricht Engineers use electricity to clean up toxic water
08.07.2020 | University of Sydney

nachricht AI goes underground: root crop growth predicted with drone imagery
18.06.2020 | International Center for Tropical Agriculture (CIAT)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>