Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of beetle outbreaks rise, along with temperature, in the warming West

09.09.2010
The potential for outbreaks of spruce and mountain pine beetles in western North America's forests is likely to increase significantly in the coming decades, according to a study conducted by USDA Forest Service researchers and their colleagues. Their findings, published in the September issue of the journal BioScience, represent the first comprehensive synthesis of the effects of climate change on bark beetles.

"Native bark beetles are responsible for the death of billions of coniferous trees across millions of acres of forests ranging from Mexico to Alaska," said Barbara Bentz, research entomologist with the Forest Service's Rocky Mountain Research Station and lead author of the study. "Our study begins to explain how their populations respond to the climatic changes being projected by the Intergovernmental Panel on Climate Change."

In the study, Bentz and her colleagues synthesized what is currently known about the effects of climate change on several species of bark beetles that cause extensive, landscape-scale tree mortality in North America. They then used a combination of models to analyze the likely response of and generate case studies for two specific species—the spruce beetle and mountain pine beetle.

"Our models suggest that climatic changes on the order of what is expected would increase the population success of both spruce beetle and mountain pine beetle throughout much of their range, although there is considerable variability," said Chris Fettig, a research entomologist with the Pacific Southwest Research Station and a coauthor of the study. "Bark beetles are influenced directly by shifts in temperature, which affect developmental timing and temperature-induced mortality, and indirectly, through climatic effects on the species associated with beetles and their host trees."

One effect the study detected is the likelihood, in a warming climate, of a substantial increase in areas of spruce forest dominated by spruce beetles that reproduce annually rather than every two years, as is common today. Annual reproduction of the beetle can contribute significantly to population growth and the occurrence of outbreaks.

In addition, the study's models also helped to address concerns about the potential for mountain pine beetles to expand their range across forests of central Canada into the central and Eastern United States. The researchers found that, without adaptation to warming temperatures, the likelihood of this occurring is low to moderate throughout this century.

"Understanding how bark beetle populations will be affected under different climate scenarios in different regions is key to developing appropriate management strategies in North American forests," Bentz said.

To read the study's abstract online, visit http://caliber.ucpress.net/doi/abs/10.1525/bio.2010.60.8.6.

The study was a partnership among the Forest Service's three western research stations; the Western Wildland Environmental Threat Assessment Center; the Canadian Forest Service; and the University of Idaho, Moscow.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>