Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Pesticide Pathways into the Atmosphere

13.07.2011
When soil moisture levels increase, pesticide losses to the atmosphere through volatilization also rise. In one long-term field study, U.S. Department of Agriculture (USDA) scientists found that herbicide volatilization consistently resulted in herbicide losses that exceed losses from field runoff.

Agricultural Research Service (ARS) soil scientist Timothy Gish and ARS micrometeorologist John Prueger led the investigation, which looked at the field dynamics of atrazine and metolachlor, two herbicides commonly used in corn production. Both herbicides are known to contaminate surface and ground water, which was primarily thought to occur through surface runoff.

Gish works at the ARS Hydrology and Remote Sensing Laboratory in Beltsville, Md., and Prueger works at the agency's National Laboratory for Agriculture and the Environment in Ames, Iowa. ARS is USDA's chief intramural scientific research agency, and this work supports the USDA priority of promoting sustainable agriculture.

Many experts believed that volatilization was not a contributing factor to water contamination because atrazine and metolachlor had a low vapor pressure. However, the monitoring of both herbicide volatilization and surface runoff at the field-scale over multiple years had never been done.

So the team set up a 10-year study in an experimental field in Beltsville that is equipped with remote sensing gear and other instrumentation for monitoring local meteorology, air contaminates, soil properties, plant characteristics, and groundwater quality. This allowed the team to carry out their studies on a well-characterized site where only the meteorology—and the soil water content—would vary.

Prueger and Gish observed that when air temperatures increased, soil moisture levels had a tremendous impact on how readily atrazine and metolachlor volatilized into the air, a key factor that had not been included in previous models of pesticide volatilization. When soils were dry and air temperatures increased, there was no increase in herbicide volatilization, but herbicide volatilization increased significantly when temperatures rose and soils were wet.

Most surprising was that throughout the study, herbicide volatilization losses were significantly larger than surface runoff. When averaged over the two herbicides, loss by volatilization was about 25 times larger than losses from surface runoff.

Results from this work were published in the Journal of Environmental Quality.

Read more about this research in the July 2011 issue of Agricultural Research magazine.

Ann Perry | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: Agricultural Research Laboratory Pestizide USDA air temperature atmosphere

More articles from Agricultural and Forestry Science:

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>