Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers: Sorghum Should Be in the Biofuel Crop Mix

21.06.2012
Sweet and biomass sorghum would meet the need for next-generation biofuels to be environmentally sustainable, easily adopted by producers and take advantage of existing agricultural infrastructure, a group of researchers led by Purdue University scientists believes.

The scientists from Purdue, the University of Nebraska-Lincoln, University of Illinois and Cornell University believe sorghum, a grain crop similar to corn, could benefit from the rail system, grain elevators and corn ethanol processing facilities already in place. Their perspective article is published early online in the journal Biofuels, Bioproducts & Biorefining.

"The Midwest is uniquely poised to get the biorefining industry going on cellulose," said Nick Carpita, a Purdue professor of botany and plant pathology. "As we move to different fuels beyond ethanol, the ethanol plants of today are equipped to take advantage of new bioenergy crops."

The scientists argue that no single plant is a silver-bullet answer to biofuels, but sorghum should be a larger part of the conversation than it is today. Cliff Weil, a Purdue professor of agronomy, said some types of sorghum would require fewer inputs and could be grown on marginal lands.

"In the near future, we need a feedstock that is not corn," Weil said. "Sweet and biomass sorghum meet all the criteria. They use less nitrogen, grow well and grow where other things don't grow."

The ability to minimize inputs such as nitrogen could be a key to sorghum's benefits as a bioenergy crop. Carpita said corn, which has been bred to produce a maximum amount of seed, requires a lot of nitrogen. But sorghum could be genetically developed in a way that maximizes cellulose, minimizes seeds and, therefore, minimizes inputs.

"If you're just producing biomass and not seed, you don't need as much nitrogen," Carpita said.

Farmers may also be more willing to grow sorghum - a crop they're familiar with - because it is an annual, compared with perennials such as switchgrass or Miscanthus, that would take up a field for a decade or longer. Sorghum would fit in a normal crop rotation with food crops rather than tying up valuable cropland.

"If we're talking about planting switchgrass, that's a 15-year commitment," said Nathan Mosier, a Purdue associate professor of agricultural and biological engineering. "You can't switch annually based on the economy or other factors. You are committed to that crop."

Conversion processes for turning biomass into fuel need to be scalable and take advantage of existing infrastructure for grain production, said Maureen McCann, a Purdue professor of biology and director of the Energy Center and the Center for Direct Catalytic Conversion of Biomass to Biofuels. Sorghum could be harvested and transported using existing rail lines to collection points such as grain elevators, where the crop could be processed to a higher-value, more energy-dense product before being transported for further processing in a refinery.

"Biomass has roughly half the energy content of gasoline - even if it's very compressed and tightly packed. The issue is really how to increase the intrinsic energy density by preprocessing conversion steps that could be done on farm or at the silo so that you're transporting higher-energy products to the refineries," McCann said.

Farzad Taheripour, a Purdue research assistant professor of agricultural economics, said bringing sorghum back as a biofuel crop could have an economic impact on poorer rural areas of the country.

"Given that sorghum can be produced on low-quality, marginal lands in dry areas, producing sorghum for biofuel will significantly improve the economy of rural areas that rely on low-productivity agriculture," Taheripour said. "This could improve welfare in less-developed rural areas and increase job opportunities in these areas."

Purdue Agriculture researchers are continuing to look at how bioenergy crops could be deployed into the agricultural landscape. Work in the Center for Direct Catalytic Conversion of Biomass to Biofuels continues to develop a knowledge base for chemical and thermal conversion technologies that might be able to take advantage of the Midwest's transportation infrastructure.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Nick Carpita, 765-494-4653, carpita@purdue.edu
Cliff Weil, 765-496-1917, cweil@purdue.edu
Nathan Mosier, 765-496-2044, mosiern@purdue.edu
Maureen McCann, 765-496-1779, mmccann@purdue.edu
Farzad Taheripour, 765-494-4612, tfarzad@purdue.edu
ABSTRACT
Envisioning the Transition to a Next-Generation Biofuels Industry in the U.S. Midwest

Ismail Dweikat, Clifford Weil, Stephen Moose, Leon Kochian, Nathan Mosier, Klein Ileleji, Patrick Brown, Wendy Peer, Angus Murphy, Farzad Taheripour, Maureen McCann, Nicholas Carpita

Corn grain ethanol production is a mature industry built on a Midwestern agricultural infrastructure. Second- and third-generation biofuels and bio-based products industries could take advantage of this robust framework. Significant but not insurmountable barriers remain for grower acceptance of bioenergy crop plants and capital investment in transitioning from grain to lignocellulosic biomass at scale. The existing infrastructure in the Midwest provides a model for implementing an environmentally responsible and sustainable next-generation biofuels industry into the agro-economy.

Brian Wallheimer | Newswise Science News
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>