Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers double sorghum grain yield to improve food supply

31.10.2019

Plant scientists at Cold Spring Harbor Laboratory (CSHL) and USDA's Agricultural Research Service (ARS), in their search for solutions to global food production challenges, have doubled the amount of grains that a sorghum plant can yield.

Sorghum, one of the world's most important sources of food, animal feed, and biofuel, is considered a model crop for research because it has a high tolerance to drought, heat, and high-salt conditions.


The left image shows the grains of a normal sorghum plant. The right image depicts how the amount of grains doubled in the genetic variant.

Credit: Ware lab/CSHL, 2019

Increasing the grain yield has become even more important to plant breeders, farmers, and researchers as they try to address and overcome food security issues related to climate change, growing populations, and land and water shortages.

Led by Doreen Ware, CSHL Adjunct Professor and research scientist at the U.S. Department of Agriculture, and USDA colleague Zhanguo Xin, Ph.D, the research team identified novel genetic variations that occurred in sorghum's MSD2 gene, increasing the grain yield 200 percent.

MSD2 is part of a gene line that boosts flower fertility by lowering the amount of jasmonic acid, a hormone that controls the development of seeds and flowers.

"When this hormone is decreased, you have a release of development that does not normally occur," said Nicholas Gladman, a postdoctoral fellow in Ware's lab and first author on the study, recently published in The International Journal of Molecular Sciences. "That allows for the full formation of the female sex organs in these flowers, which then allows for increased fertility"

MSD2 is regulated by MSD1, a gene discovered by Ware's team last year. Manipulating either gene increases seed and flower production.

"Major cereal crops are very close to each other evolutionarily. A lot of the genes that they share have similar functions," said Yinping Jiao, a postdoctoral associate in the Ware Lab and an author on the study. "This gene that plays an important role controlling the sorghum yield may also help us improve the yield of other crops like maize or rice."

Ware's lab uses this type of genetic research to understand how plants have changed over time.

"These genetic analyses actually give us the molecular mechanisms that provide more opportunities to engineer crops in the future," she said.

###

The team is now looking to work with collaborators, such as the United States Department of Agriculture, to see if one of the genes--MSD2 or MSD1--can be used to improve sorghum yield in large field trials.

Media Contact

Sara Roncero-Menendez
roncero@cshl.edu
516-367-6866

 @CSHL

http://www.cshl.edu 

Sara Roncero-Menendez | EurekAlert!
Further information:
https://www.cshl.edu/researchers-double-sorghum-grain-yield-to-improve-food-supply/

More articles from Agricultural and Forestry Science:

nachricht Algorithms and sensors for sustainable and future-proof agriculture
22.01.2020 | Technische Universität München

nachricht Are sinking soils in the Everglades related to climate change?
15.01.2020 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>