Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Primer to Plant Defense System

07.04.2009
By identifying a novel compound that primes a plant’s immune system, researchers at Oak Ridge National Laboratory and the University of Chicago may be on a path to developing disease-resistant plants.

In a paper published in Science, a team that includes Tim Tschaplinski of the Department of Energy’s ORNL reports that azelaic acid has a role in priming the immunity response in Arabidopsis, a small flowering plant related to cabbage and mustard.

This plant, commonly known as thale cress or mouse-ear cress, is widely used as a model organism for studying higher plants.

While Tschaplinski acknowledged that this field is in its infancy and involves a very complex network of responses, he and co-authors are excited about what may lie ahead.

“Long term, this discovery may prove useful for preventing diseases in crops and other plants, and perhaps for generating plants that are more disease-resistant in the first place,” said Tschaplinski, a member of ORNL’s Environmental Sciences Division.

The discovery was actually made when Tschaplinski kept noticing a persistent mass spectral signature that occurred soon after Arabidopsis plants were exposed to a bacterial pathogen. The signal matched a pattern in a database of mass spectral signatures of Arabidopsis metabolites and prompted Tschaplinski to have a conversation with the University of Chicago’s Jean Greenberg and postdoctoral scholar Ho Won Jung. Their discussion led to some additional research and this paper, titled “Priming in Systemic Plant Immunity.”

Among key findings was that plants can boost their overall immunity to infection once they have a local exposure to certain pathogenic microbes. This occurs through a series of steps, beginning with a primary infection that causes the plant to induce defenses to contain the spread and growth of the pathogen. The infection causes the plant to produce more azelaic acid, which stimulates the production of AZ11, a protein that the researchers found to be essential for the increased systemic plant immunity.

Azelaic acid moves throughout the stem and leaves and bolsters the plant’s immune system so it can respond quicker and more effectively to diseases compared to naïve plants, according to the researchers. Through this process, plants accumulate very high levels of the defense signal salicylic acid, and this helps inhibit the progression of secondary infections.

“With respect to future science, a number of other novel signatures are clearly evident and can be pursued as a component of the plant-microbe scientific focus area if that is a route we decide to go,” Tschaplinski said.

In the meantime, the authors note that, “The identification of novel systemic acquired resistance components may be useful for plant protection and provides new insight into how some interactions trigger systemic plant immunity.”

Other authors are Lin Wang and Jane Glazebrook of the University of Minnesota. Funding for the research, led by Greenberg, was provided by DOE’s Office of Science and the National Science Foundation.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>