Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Collaborate Across Continents in Weed Study

25.05.2009
When velvetleaf weed grows in competition with corn, its genes used for photosynthesis and cell division are enhanced more so than if the weed grew in a monoculture.

For velvetleaf in proximity to corn, “growing like a weed” means making additional demands on genes needed to fuel rapid growth in the race for sunlight and nutrients.

That’s one key finding in studies that evaluated velvetleaf growing in a monoculture or in competition with corn. Weed scientists found that when competing with corn, velvetleaf ramps up genes needed for assimilating carbon into sugars, genes used in photosynthesis and genes that stimulate cell division. In addition, genes that regulate the shade response that causes a plant to lengthen or elongate its stem are expressed in greater level in the weeds competing with corn than in velvetleaf growing alone.

“In other words, if you think the weed is growing more quickly than the corn, that may be because — as this research suggests — it is,” South Dakota State University weed scientist Sharon Clay said.

That study won a prestigious award for Clay and her co-authors, USDA-ARS scientist David Horvath and Danny Llewellyn, the sub-program leader of genomics and plant development at the Commonwealth Scientific and Industrial Research Organization in Australia. The scientists used technology called a DNA microarray analysis to study what genes were more actively expressed under different treatments in order to better understand how the weed’s basic growth functions were responding to competition from corn.

Better understanding of what is happening within the weed plant could lead to better weed control strategies to help farmers, Clay said — especially for post-emergent weed management.

“We don’t know, at present, exactly when these genes ramp up, but control should be applied prior to these events, because once this occurs, these plant modifications will accelerate growth rates,” Clay said. “Higher growth rates will result in larger plants more quickly, and those weeds are more difficult to control.”

Clay carried out the field plot research on velvetleaf grown in competition with corn in SDSU test plots near Aurora, S.D. Velvetleaf, like cotton, is a member of the Malvaceae family. A broad-leafed annual weed that is native to China and India, it was originally introduced to the United States before the 1700s as a possible fiber crop. The weed has spread worldwide and, if allowed to grow unchecked, can cause yield losses of 100 percent.

This study marked several first-time experimental achievements, including examination of gene activation through microarray analysis in the weed genome in response to competition with a crop. It also used DNA microarrays developed from a related plant — cotton, or Gossypium hirsutum — to carry out the study rather than using DNA microarrays specifically developed for velvetleaf.

These techniques were so innovative that the Weed Science Society of America gave Clay and her co-authors the society’s award for Outstanding Paper. Their study, “Heterologous Hybridization of Cotton Microarrays with Velvetleaf Reveals Physiological Responses Due to Corn Competition,” appeared in Weed Science in the November/December 2007 issue. The award is given to authors of the academic paper judged to be the outstanding contribution to the journal Weed Science over the past year. Only one paper is selected for the award annually.

“Although a picture is emerging concerning how corn responds to velvetleaf competition, significantly less is known about what effect the corn has on velvetleaf,” Clay said. In fact, in a related study by Clay and her colleagues that examined how corn responded to velvetleaf, researchers found that the corn actually slowed some of the same genes that velvetleaf accelerated.

“This seems to indicate that corn is a poor competitor with weeds, and while velvetleaf is speeding up growth in response to corn, corn may actually be slowing growth,” Clay said.

That has implications for weed management and may help explain why corn yield potential may be reduced by weeds even if controlled very early in the season — even when water or nutrients are not limiting.

“These data are just beginning to shed light on how different plants function,” Clay said. “But it would appear that there’s sound science behind the phrase, ‘growing like a weed.’ At least from what we can tell from studying velvetleaf growing with corn, weeds really do turn up the expression of genes that give them a competitive advantage.”

Clay and her colleagues are continuing to study crop/weed competition with research grants from several sources including the Agriculture and Food Research Initiative, the South Dakota Corn Utilization Council, and the South Dakota Agricultural Experiment Station.

Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 200 majors, minors and options. The institution also offers 23 master’s degree programs and 12 Ph.D. programs.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>