Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher grows roots on upper part of plant

31.10.2008
The molecular cell biologist Pankaj Dhonukshe from Utrecht University has succeeded in growing roots on plants at places where normally leaves would grow.

This important step in plant modification can be highly beneficial for improving crop yields and efficiency in the agricultural sector. This research was largely carried out in collaboration between Utrecht University (The Netherlands) and Ghent University (Belgium) with help from scientists in Japan, USA and Switzerland. The results of this research appeared as an advance online publication of the weekly science journal Nature on 26 October 2008.

The plant hormone auxin plays a crucial role in coordination of stem cells and organ formation in plants. It promotes the formation of roots from stem cells and coordinates the growth of leaves and fruits. Auxin is produced mainly in young leaves, or shoots, and is then transported from one cell to the next towards the basal region of plant ultimately leading towards root formation.

Roots above ground
Pankaj Dhonukshe discovered a molecular switch to alter the auxin transport. By turning on the switch, Dhonukshe was able to reduce the extent of auxin transport towards the roots. The hormone then began to accumulate at the places in the young leaves where it is produced and roots began to emerge here where normally leaves would grow.
Increased yields
These results are an important step in our understanding of the way plants grow and create novel future possibilities to modify the positioning of various plant organs such as roots, fruits and leaves. This specific manipulation of plant architecture promises to enhance yield-traits and crop harvesting. Molecular switches are particularly interesting for influencing plant forms, because utilization of traditional plant refinement approaches has certain limitations. The Utrecht research group is currently examining further interesting possibilities in this area.
Collaborative Research
Dhonukshe carried out the developmental biology research at Utrecht University, and the cellular biology research in cooperation with Ghent University.
Life Sciences and Biocomplexity
Utrecht University has organised its top-level research into fifteen focus areas, which are intended to promote high-quality research and contribute to solving major problems in society. The study described above falls under the category ‘Life Sciences and Biocomplexity’, in which research is being carried out into all the processes in the cell from the molecular scale to the creation of multi-celled organisms and the interaction among cells. Genomics and proteomics form an important part of this area.

Peter van der Wilt | alfa
Further information:
http://www.uu.nl/EN/research/focusareas
http://www.uu.nl

Further reports about: Agricultural Biocomplexity crop yields plant hormone stem cells

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>