Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell helps develop pest-resistant eggplant, the first genetically modified food crop in South Asia

10.10.2007
Cornell researchers and Sathguru Management Consultants of India have successfully led an international consortium through the first phase of developing a pest-resistant eggplant. By about 2009 this eggplant is expected to be the first genetically engineered food crop in South Asia. Farmers have grown genetically altered cotton in India since 2002.

The engineered eggplant expresses a natural insecticide derived from the bacteria Bacillus thuringiensis (Bt), making it resistant to the fruit and shoot borer (FSB), a highly destructive pest. The tiny larvae account for up to 40 percent of eggplant crop losses each year in India, Bangladesh and the Philippines, and other areas of South and Southeast Asia.

The work on the resistant eggplant is part of the Agricultural Biotechnology Support Project (ABSP) II, which is funded by the U.S. Agency for International Development and administered by Cornell in partnership with Sathguru, a firm associated with Cornell's College of Agriculture and Life Sciences (CALS).

Cornell researchers from plant breeding, entomology, molecular biology, applied economics, communication, international programs and the Cornell Center for Technology Enterprise and Commercialization began collaborating on the development of the Bt eggplant in 2002. Another partner, Maharashtra Hybrid Seeds, is on schedule to commercialize the genetically modified fruit by 2009.

"Cornell has worked effectively to facilitate a productive partnership between the public and private sectors that will make this technology available to eggplant producers at every economic level," said Ronnie Coffman, international professor of plant breeding and genetics and director of International Programs in CALS.

"In five years, with support from Sathguru and Cornell, our partners were able to bring this flagship program to field trials and get food, feed and environmental safety approvals," said K.V. Raman, Cornell professor of plant breeding.

All the safety tests for the Bt eggplant have been conducted in India, starting in greenhouses and now moving to large-scale field trials. The eggplant has been found to be nontoxic to fish, chickens, rabbits, goats, rats and cattle as well as nonallergenic. Ongoing tests will examine such questions as whether the plant will continue to resist FSB in the field and for how long; whether the Bt eggplant cross pollinates with other eggplants in the field and how far the Bt plants should be from other eggplant fields; whether nontarget insect populations are affected in the long term; and how yields compare with those of other eggplant varieties.

It is estimated that the Bt eggplant will reduce insecticide use by 30 percent while doubling the yield of marketable fruit (although eggplant is eaten as a vegetable).

Eggplant is a popular crop in the subtropics and tropics, especially in India and Bangladesh, where it is grown on about 1.5 million acres.

India and Bangladesh together expect to plant 110,000 acres of the FSB-resistant eggplant commercially by the end of 2010 and 650,000 acres by 2015. Economists from Cornell and other institutions report that the Bt eggplant would result in lower prices for consumers, higher yields for farmers and, by 2015, boost the Indian economy by $411 million and the Bangladeshi economy by $37 million.

"In spite of the green revolution in India, agricultural growth has stagnated there to less than 2 percent per year," said Raman. "It is important for a land-grant university like Cornell to be engaged in the improvement of technologies and help create a road map that leads to agricultural and economic growth in places like South and Southeast Asia and Africa."

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>