Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative methods proposed to detect pesticides and antibiotics in water and natural food

19.09.2007
Water or food of natural origins (from plants or animals) that we consume on a daily basis can contain unwanted ‘supplies’ for our organism, such as pesticides or antibiotics.

A doctoral thesis carried out by Jorge Juan Soto Chinchilla, from the Department of Analytical Chemistry at the University of Granada (Universidad de Granada), and directed by professors Ana María García Campaña and Laura Gámiz Gracia, proposes new analysis methods for the detection of pesticide residue (carbamates) and antibiotic residue (sulfonamides) in water, plant foods and food of animal origin (milk and meats from varied sources). These new methods constitute a routine analysis alternative to the analysis used until now. Research forms part of several projects financed by the Spanish National Institute for Agrarian and Alimentary Research (INIA) and the Ministry of Education and Science, in collaboration with the company Puleva Biotech.

The main goal of the work “New analytical methodologies, under quality criteria, for the determination of pharmaceutical residues in waters and food”, carried out by the research group “Quality in Food, Environmental and Clinical Analytical Chemistry (FQM-302)”, has been to develop new methods to detect residues in food of these contaminants below the Maximum Residue Levels (MRL) established by the European Union, in order to guarantee the quality of the product and permit its distribution and consumption. Researchers point out, regarding water, that “the interest caused by control of residue levels of pesticides, which can be found in water as a result of treatment of crops with such compounds, is widely known. ”However, concern on detecting pharmaceutical residue, specifically antibiotic, is quite recent. The presence of these contaminants in fresh waters can cause a certain bacterial resistance or allergic reactions in the consuming population.

Innovative techniques

In order to achieve this, the study carried out by the UGR [http://www.ugr.es], used techniques that have not been much explored in these fields. Cathodoluminiscence detection (CL) connected to Flow Injection Analysis (FIA) and High Performance Liquid Chromatography (HPCL), or Capillary Electrophoresis (CE) with UV/Vis detection using an online preconcentration technique in the capillary itself, or detection via Mass Spectometry (MS). MS can also unequivocally identify the analysed compounds. Research has been specifically based on carbamates, a widely used pesticide family, and on sulfonamides, a group of wide-spectrum antibiotics commonly used in medicine and veterinary science.

Researchers point out that methods developed in this work could be applied in the future to routine analysis for this kind of residue control in plant foods and foods of animal origin, in Quality and Alimentary Safety laboratories, or in the detection of such contaminants in waters of varied sources. “These methods definitely constitute interesting alternatives to the already established and less sensitive methods which imply a greater consumption of organic solvents and generate more contaminant residues,” the author of the thesis points out.

FQM-302 research group has been working on the proposal of methods of detecting contaminant residues in foods and in the environment for several years. Currently work is being carried out in different doctoral theses which looks at the study of other pesticide families and their degradation products, as well as the study of other antibiotics such as quinolones and beta-lactams using the methods mentioned above.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es/~qanaliti/
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>