Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abertay researchers in clover to unearth destructive bug

08.04.2002


Scots scientists are playing a key role in a major new research effort which could save Britain’s farmers millions of pounds a year through reductions in fertiliser and pesticide use.



Biotechnology experts at the University of Abertay Dundee, in partnership with two organisations in England, have been awarded £471,000 by the BBSRC (Biotechnology and Biological Sciences Research Council) for a three-year study into the relationship between white clover and a tiny insect.

White clover is highly valued throughout the country both for its feeding value for livestock and for its ability to ‘fix’ nitrogen in the soil - a vital nutrient for other plants.


Some 75% of grassland seed mixtures sown in the UK include white clover, yet studies have shown that it only thrives in around 20% of fields managed as pasture for cattle and sheep. Experts believe that the main culprit is a tiny weevil, less than one millimetre long, which eats the roots of the plant including the all-important nitrogen-fixing nodules.

High levels of expensive fertiliser are needed to ensure that white clover grows properly and contributes to the productivity of the pasture and the livestock which feeds upon it.

Now, Abertay biotechnologists are working with colleagues at Reading University and the Institute of Grassland and Environmental Research (IGER), to find out exactly what is going on just beneath the surface of our fields.

Researchers at Reading will be using advanced CAT scanners (computerised axial tomography) to see inside the soil without physically affecting it - the same non-invasive technology used widely in medicine for diagnosing conditions inside the body.

Experts at Abertay will then apply the latest computerised statistical techniques to produce a theoretical model of what happens inside the soil and what factors are influencing change. This can then be used to predict the outcome of changing any one of those factors through management of the field. It is hoped that the study will produce a new management model which could reduce the amount of fertiliser applied to UK grassland and comply with new, more stringent, environmental legislation in the future.

Professor John Crawford, director of SIMBIOS - the joint centre for mathematical biology established at the Universities of Abertay Dundee and Dundee - explained: “We know that this weevil, from the Sitona genus, preys on the root systems of the plant, but we don’t know how it moves around in the soil to find the roots. When you are less than a millimetre long, finding a food source several centimetres away could be difficult, but Sitona seems to manage.

“We need to find out how the weevils and their larvae do this, and what environmental factors influence their success. Then we can draw up guidelines of management practice which will help farmers reduce the impact of the weevil without using expensive and environmentally-unfriendly chemicals.”

Kevin Coe | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>