Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study looks at implications of salmon breeding

15.08.2007
The implications of breeding between farmed and wild salmon will be investigated in a new project led by scientists at the University of East Anglia in Norwich.

For the first time researchers will measure the fertilisation compatibility between farmed and wild salmon, and therefore the risk of farmed genes entering wild populations, which are in severe decline.

Wild Atlantic salmon stocks have fallen by more than 50pc, mainly through poorly-managed fisheries and deterioration of feeding and spawning habitats. But there are also serious ecological and genetic threats to wild populations from salmon farming, through the escape of farmed fish into wild salmon ecosystems.

The three-year study, which starts this month, has received funding of just over £330,000 from the Natural Environment Research Council. Much of the field work will be carried out at the Norwegian Institute of Nature Research and at hatcheries in Scotland.

Leading the team is Dr Matthew Gage, from UEA’s School of Biological Sciences.
“Salmon farming is a multi-million pound industry and takes the pressure off wild salmon as a food source. But the significant and increasing entry of farmed salmon into wild populations presents important problems for a species that is already of significant conservation concern,” he said.

“Ecologically, escaped fish can reduce the fitness of wild fish by competing for resources such as food, space and mates, or by disturbing spawning sites or passing on pathogens that can cause disease. Such repeated releases of new genetic strains into an already stressed wild population could lead to ‘genetic swamping’ and the complete dilution of wild genes.”

Currently, more than 95 per cent of Atlantic salmon in existence are of farmed origin. An estimated two million farmed salmon escape and enter the North Atlantic each year, equalling the number of wild fish. Farmed fish enter spawning populations, with an average of 11-35 per cent of salmon in Norwegian rivers of farmed origin.

Farmed fish present a major problem for wild Atlantic salmon because they compete for resources, but potentially more important is the introgression of domestically-selected farmed genes into wild populations, leading to loss of local adaptation.

Farmed salmon have undergone decades of intense selective breeding, including selection for faster growth and efficient feed conversion and increased aggression, giving them a reduced fitness compared with wild strains under selection from the wild.

Dr Gage said: “Our project will try and actually quantify the degree of fertilization compatibility at that all-important sperm and egg level. Farmed fish have been selected under very different regimes to wild fish so their relative fertility might have gone up or down. We hope to provide the objective information on fertilization compatibility between farmed and wild fish, and that could allow policy makers to make more informed decisions for both aquaculture and salmon conservation.

“Evidence shows that escaped farmed salmon tend to be less behaviourally successful at spawning in the natural environment than their wild counterparts, but we will be looking in detail at fertilization compatibilities between sperm and egg, and under competition between males of farmed and wild origins.

“The other exciting aspect of this project is that we will be able to address questions on the evolution of reproductive isolation, which is likely to evolve initially via reductions in sperm-egg compatibility.”

Press Office | alfa
Further information:
http://comm.uea.ac.uk/press/release.asp?id=776

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>