Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother knows best - even how to improve crop yield

30.07.2007
Scientists at the University of Oxford have paved the way for bigger and better quality maize crops by identifying the genetic processes that determine seed development.

Plant scientists have known for some time that genes from the maternal plant control seed development, but they have not known quite how. The Oxford research, supported by the Biotechnology & Biological Sciences Research Council (BBSRC) and highlighted in the new issue of BBSRC Business, has found at least part of the answer.

Working in collaboration with researchers in Germany and France, Professor Hugh Dickinson's team found that only the maternal copy of a key gene responsible for delivering nutrients is active. The copy derived from the paternal plant is switched off. This gene encodes a potential signalling molecule found in the endosperm - a placenta-like layer that nourishes the developing grain, which is involved in 'calling' for nutrients from the mother plant, and so triggers an increased flow of resources. Similar mechanisms can almost certainly be expected in other cereals, and with cereal grain being a staple food across the world, the potential to harness this science to improve yields is clear.

Prof. Dickinson explains: "By understanding the complex level of gene control in the developing grain, we have opened up opportunities in improving crop yield.

"The knowledge and molecular tools needed to harness these natural genetic processes are now available to plant breeders and could help them improve commercial varieties further. For example, they can better understand how to successfully cross-breed to produce higher quality crops. The cereal grain is a staple food of the world's population: with the changing climate and growing population, the need for sustainable agriculture is increasingly pressing."

The mechanism used to switch off paternal genes ensures supremacy of maternally-derived genes. This process is known as 'imprinting' and is achieved mainly through 'methylation' - a naturally occurring chemical change in the DNA. A very similar mechanism takes place in animal embryos. However, unlike the animal imprinting systems where genes are often grouped in the chromosomal DNA, in maize imprinted genes are 'solitary' and independently regulated.

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>