Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isoprene emission from plants – a volatile answer to heat stress

26.07.2007
Isoprene is a hydrocarbon volatile compound emitted in high quantities by many woody plant species, with significant impact on atmospheric chemistry. The Australian Blue Mountains and the Blue Ridge Mountains in the Eastern United States are so called because of the spectral properties of the huge amounts of isoprenes emitted from the trees growing there.

Although a positive correlation has been observed between leaf temperature and isoprene emission in plants, the physiological role of isoprene emission, which is clearly quite costly to the plant, is still under vigorous debate. One of the most popular hypotheses suggests that isoprene protects the metabolic processes in the leaf, in particular photosynthesis (the process by which plants use light energy to fix CO2 and produce their own “food”), against thermal stress.

To test this hypothesis, scientists Katja Behnke and Jörg-Peter Schnitzler from the Institute for Meteorology and Climate Research of the Research Centre Karlsruhe in Garmisch-Partenkirchen in Germany, together with colleagues from the Universities of Braunschweig and Göttingen, also in Germany, and British Columbia, in Canada, recently applied genetic engineering techniques to obtain transgenic Grey poplar (Populus x canescens) trees with decreased isoprene emission, and examined their tolerance to heat. Their findings have been published in The Plant Journal.

Behnke et al. engineered such poplar trees by suppressing the expression of the gene encoding isoprene synthase (ISPS), the enzyme producing isoprene, by RNA interference (RNAi). They then subjected these trees to transient heat phases of 38-42°C, each followed by phases of recovery at 30°C, and measured the performance of photosynthesis. In these experiments, Behnke et al. observed that photosynthesis in trees that no longer emitted isoprenes was much less efficient under such repeated “heat shocks” (a situation that is similar to what happens in nature, where temperatures around the leaves often oscillate, with short heat spikes). Thus, their results clearly indicate that isoprenes have an important role in protecting the leaves from the harmful effects of high ambient temperature.

How does isoprene confer heat tolerance? Does isoprene act as an antioxidant due to its chemical reactivity? And more generally: Is this effect of significance under natural conditions for poplar and other isoprene-emitting species? The researchers aim to analyse the biophysical and biochemical mechanisms of heat effects on photosynthesis and chloroplasts, and future long-term field trials will test whether the isoprene effect represents a positive adaptive trait for isoprene-producing species.

Davina Quarterman | alfa
Further information:
http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-313X.2006.02995.x

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>