Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Iron in a jacket’ helps combat anaemia in Africa

25.05.2007
A new way of fortifying flour with iron helps combat anaemia in developing countries through food. Researchers from Wageningen University, Unilever and Akzo Nobel will be making this known in the authoritative scientific journal, The Lancet, this week. Together with colleagues from the Kenya Medical Research Institute, they elaborate on an earlier finding in which iron is piloted through the acid stomach ‘in a jacket’.

In developing countries, half of all young children suffer from anaemia, often as a result of iron-deficiency. The cause is a one-sided diet based mainly on grains. These contain phytates, substances which bind the nutrient iron from plant sources as insoluble salts. As the iron-binding phytates are not broken down in the gastrointestinal tract, the body absorbs only 5% of all the iron in plant food. The rest is excreted by the body.

Iron-deficiency can be combated relatively inexpensively by adding iron to foodstuffs. Maize and wheat are ideal for this; large population groups consume these types of flours in large quantities throughout the year. International efforts (including those of the World Health Organization and Unicef) to reinforce flour with iron are beginning to bear fruit. In 1990 only the United States and Canada reinforced their flour with iron; now 49 countries are doing the same, including Nigeria and South Africa, countries of influence in Africa.

In most countries fortification is by adding almost pure iron powder. This is prepared by treating iron oxides with hydrogen or carbon monoxide at high temperatures, or by a process in which iron is produced electrolytically from iron sulphate. The product is then ground into a very fine powder.

The researchers from Wageningen University and from Unilever suspected, however, that this iron powder would not be effective because it also binds with the phytates. So they used iron that Akzo Nobel had chemically ‘wrapped’ in an organic ‘jacket’ made of the compound EDTA. The iron-EDTA (chemical formula NaFeEDTA.3H2O) protects the iron, so that it is not able to bind with the phytates. The iron 'in a jacket' which is consumed with the food remains bound in the acid conditions in the stomach. It becomes available for absorption by the intestinal cells in less acid conditions, like that of the small intestine.

The researchers put this to the test by comparing electrolytically produced iron with iron in iron-EDTA in a so-called randomised placebo-controlled trial among 516 Kenyan schoolchildren. In this experiment, different groups of children were given porridge made from whole maize flour every day for a period of five months. Electrolytic iron was added to the flour for the first group in amounts according to the requirements of the South African government (56 mg/kg). A second group was given porridge made from flour with an equal amount of ‘jacketed’ iron (iron-EDTA). No iron was added to the flour of the third group of children.

At the end of the experiment, it appeared that fortification with iron-EDTA had reduced the occurrence of iron-deficiency anaemia by 89%, while the electrolytic iron had no effect at all on the prevention of anaemia. As expected, it appeared that the children with an iron deficiency, in particular, gained from the intervention; in contrast, the iron-EDTA had no effect on the children who already had sufficient iron reserves at the beginning of the experiment. The iron intervention did not lead to iron overload because the body regulates the absorption of iron in accordance with its requirements.

The researchers have come to the conclusion that iron-EDTA gives an improved iron status and that this in case of fortification of flours with high phytate contents, as is common in Africa and developing countries elsewhere, is to be preferred to electrolytic iron. It is expected that these findings will lead to amendments to national directives and legislation concerning food fortification in developing countries.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>