Drought sensitivity shapes species distribution patterns in tropical forests

A contingent of researchers from around the world, including Germany, Panama, USA and Canada, have uncovered that tropical plant species distribution patterns are linked to the plant’s drought sensitivity.

For this study, the researchers conducted irrigation experiments on 48 native tree and shrub species to determine drought sensitivity between dry and irrigated conditions, which confirmed that species vary widely in drought sensitivity. The researchers also assessed regional plant species distribution across two large plots on opposite sides of the Isthmus of Panama. Through this assessment it was found that the plant’s densities at the dry Pacific side compared to the wet Atlantic side correlated negatively with drought sensitivity.

“Our results suggest that niche differentiation with respect to soil water availability is a direct determinant of the distributions of tropical plant species,” said Dr. Mel Tyree, University of Alberta researcher.

Although tropical plant species’ reactions to environmental factors, namely light and nutrients, have been experimentally assessed in numerous studies, only a few have quantitatively linked this data to distribution patterns. These studies were restricted to a small number of species, precluding analysis of the importance of environmental factors across the community. Thus, these findings represent the most thorough study so far linking tropical plant species distribution patterns with species’ reactions to an environmental factor at the community level

“The results presented here emphasize the sensitivity of tropical forests to water availability,” said Dr. Tyree. “Therefore, changes in soil moisture availability caused by global climate change and forest fragmentation are likely to alter tropical species distribution, community composition and diversity.”

Media Contact

Kris Connor alfa

More Information:

http://www.ualberta.ca

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Partners & Sponsors