Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

East Africa small-scale cereal farmers receive major boost

13.04.2007
The Swiss-based BioVision, Kilimo Trust Uganda and the Nairobi-headquartered icipe – African Insect Science for Food and Health, have recently achieved a major milestone towards maximising maize and sorghum production, while improving the health and income of small-scale farmers in East Africa.

This follows the collaboration of these organisations towards the development of a curriculum for Farmers Field Schools (FFS) on the icipe’s ‘push-pull’ technology, an innovative strategy, which simultaneously combats stemborer moths, striga weeds, and poor soil fertility. Stemborers and striga together can, if not controlled, lead to as much as 100% yield losses of maize. As a result, although maize is the most important staple food in sub Saharan Africa (SSA), the region’s average per hectare yield of this cereal is the lowest in the world, and far below the population’s needs. Maize harvests that would be saved by controlling these two pests could feed an additional 27 million people in SSA.

Unfortunately, small-scale farmers who contribute more than 80% of the continent’s maize production often lack the money to buy synthetic pesticides, which are in any case not only harmful to the environment, but usually ineffective as well.

‘Push-pull’ is the result of a 10-year quest by Rothamsted Research, United Kingdom in collaboration with the Nairobi-headquartered icipe – African Insect Science for Food, Kenya’s Ministry of Agriculture, livestock and fisheries to provide such farmers with environmentally-friendly and sustainable methods to control these two pests.

The strategy uses a novel combination of forage plants which, when intercropped with cereals, act as both a trap and a repellent for stemborers and striga. The two plants so far employed by icipe are Napier grass, which attracts the moths, and desmodium, which produces semiochemicals that repel stemborers. Napier, planted as a border around the main crop, ‘pulls’ them away from the cereal and leaving it protected Desmodium is planted intimately within the rows of maize or sorghum to ‘push’ the pests. In addition, the roots of desmodium generate several isoflavones, some of which inhibit the germination, while others prevent the attachment of striga seeds to the root of the cereal.

Currently, more than 7000 farmers in 19 districts in Kenya and in five districts in Uganda are practising push-pull, while training demonstrations have started in Tanzania. In these sites, ‘push-pull’ has increased maize yields by an average of 25% in areas where only stemborers are present, and by more than 80% where both stemborers and striga are a problem. In addition, ‘push-pull’ has contributed to the augmentation of livestock production, especially on small farms where pressure on land is high, since both napier grass and desmodium provide quality fodder for livestock. Importantly too, the technology increases soil fertility as desmodium has nitrogen-fixing and moisture retention qualities.

The recently launched ‘push-pull’ curriculum is based on the realisation that poor dissemination of research technologies is partly to blame for continuing decline in agricultural productivity, and the increasing poverty among small-holder farmers in SSA. The aim of the collaborating institutions, therefore, is to expand the ‘push-pull’ technology to as many farmers as possible, taking into account its knowledge intensive nature and the need to guide end-users in learning its principles and practices. The curriculum will also be an important resource for the national extension system, the NGOs and the Community Based Organisations (CBOs).

The curriculum is a product of input from several individuals and organisations in the region, including farmers, research scientists, agricultural extension officers, practitioners from Non Governmental Organisations and donors.

Liz Nganga | alfa
Further information:
http://www.push-pull.net
http://www.icipe.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>