Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier, more consistent mango production

16.03.2007
Mango flowering and production in Réunion alternates: production levels are only high every other year. Another drawback is that production centres on a four-month period, from November to February, with a peak in December that pushes prices down.

These two constraints are about to be lifted, thanks to research by a CIRAD team working on integrated fruit and horticultural production in Réunion. Over the past six years, its researchers have been working to understand the flowering mechanism in mango*. The aim is to guarantee growers a more consistent income by sustaining production from one year to the next, and also to ensure that mangoes come onto the market, particularly the export market, earlier, by managing harvesting dates more efficiently and ensuring better crop distribution throughout the season.

Reducing the inflorescence and fruit load

The researchers first showed that the alternate production pattern was linked to a similar pattern in terms of the trees' carbon, ie energy, reserves. In a productive year, the many fruits draw sugars from the trees' carbon reserves, particularly in the fruiting branches but above all in the roots. The following year, the trees have lower carbon reserves, which may account for their poor flowering and resulting lower production. Hence to ensure more consistent mango production from year to year, the team suggests reducing inflorescence and fruit load, to prevent exhaustion of the trees' carbon reserves.

As regards controlling the flowering date, the team has shown that vegetative growth, flowering and fruiting are closely linked: "Their intensity and evolution over time depend on the characteristics of the growth units [stem section that appears during a given growth period, editor's note] that are likely to branch, flower or bear fruit", explains Frédéric Normand. Vegetative growth control techniques, such as pruning or thinning, could thus encourage flowering and modify the flowering date.

Solutions to be tested

These advances mean that it is now possible to test new mango cropping management methods, under a collaborative development project funded by the Ministry of Agriculture and Fisheries**. The project is to be led by CIRAD, and will start in March 2007. The agronomic component of the project is intended to reduce production alternation, control harvesting dates and improve fruit quality. It should also make it possible to test the solutions proposed based on previous results. The new project will also attempt to cut pesticide use by controlling another phenomenon: asynchronized flowering, vegetative growth and fruiting. The idea is to concentrate each of these generally lengthy phases over a shorter period, to ensure that the leaves, flowers and fruits are not exposed to pests and diseases for such a long time. This is crucial for producing better quality fruits in a more ecofriendly way.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=641

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>