Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New success in engineering plant oils

06.03.2007
Technique could yield materials to replace petrochemicals and more nutritious edible oils

Using genetic manipulation to modify the activity of a plant enzyme, researchers at the U.S. Department of Energy's Brookhaven National Laboratory have converted an unsaturated oil in the seeds of a temperate plant to the more saturated kind usually found in tropical plants. The research will be published online by the Proceedings of the National Academy of Sciences (PNAS) the week of March 5, 2007.

While conversion of an unsaturated oil to an oil with increased saturated fatty acid levels may not sound like a boon to those conscious about consuming unsaturated fats, "the development of new plant seed oils has several potential biotechnological applications," said Brookhaven biochemist John Shanklin, lead author on the paper.

For one thing, the new tropical-like oil has properties more like margarine than do temperate oils, but without the trans fatty acids commonly found in margarine products. Furthermore, engineered oils could be used to produce feedstocks for industrial processes in place of those currently obtained from petrochemicals. Shanklin also suggests that the genetic manipulation could work in the reverse to allow scientists to engineer more heart-healthy food oils.

"Scientists have known for a long time that the ratio of saturated to unsaturated fatty acids plays a key role in plants' ability to adapt to different climates, but to change this ratio specifically in seed oils without changing the climate is an interesting challenge," remarked Shanklin. "Our group sought to gain a better understanding of the enzymes and metabolic pathways that produce these oils to find ways to manipulate the accumulation of fats using genetic techniques."

The researchers focused on an enzyme known as KASII that normally elongates fatty acid chains by adding two carbon atoms. The longer 18-carbon chains are more likely to be acted on by enzymes that desaturate the fat. So the scientists hypothesized that if they could prevent the chain lengthening by reducing the levels of KASII, they could decrease the likelihood of desaturation and increase the level of saturated fats in the plant seeds.

Their hypothesis was supported by the fact that scientists had previously identified a plant with a mutated KASII that showed reduced enzyme activity, and these plants were able to accumulate more saturated fats than was normal. So the Brookhaven team set out to reduce KASII activity with the use of RNA-interference (RNAi) to see if they could further increase the level of saturation in plant seed oils.

The Brookhaven scientists performed their experiments on Arabidopsis, a plant commonly used in research. Like other plants from temperate climates (e.g., canola, soybean, and sunflower), Arabidopsis contains predominantly 18-carbon unsaturated fatty acids in its seed oil. Tropical plants, in contrast (e.g. palm), contain higher proportions (approximately 50 percent) of 16-carbon saturated fatty acids.

The results were surprising. The genetic manipulations that reduced KASII activity resulted in a seven-fold increase in 16-carbon unsaturated fatty acids — up to an unprecedented 53 percent — in the temperate Arabidopsis plant seed oils.

"These results demonstrate that manipulation of a single enzyme's activity is sufficient to convert the seed oil composition of Arabidopsis from that of a typical temperate pant to that of a tropical palm-like oil," Shanklin said. "It is fascinating — and potentially very useful — to know that we can change the oil composition so drastically by simple specific changes in seed oil metabolism, and that this process can occur independently from the adaptation to either tropical or temperate climates."

For example, such a technique could lead to the engineering of temperate crop plants to produce saturated oils as renewable feedstocks for industrial processes. Such renewable resources could help reduce dependence on petroleum.

Conversely, methods to increase the activity of KASII, and therefore the production of 18-carbon desaturated plant oils, may provide a useful strategy to limit the accumulation of saturated fatty acids in edible oils, leading to more healthful nutrition.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.pnas.org/cgi/doi/10.1073/pnas.0611141104
http://www.bnl.gov/newsroom

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>