New research to help the fight against foot and mouth

Researchers from the University’s Faculty of Biological Sciences aim to find out exactly how the virus infects animals and spreads – a first step in developing a treatment for the disease. An effective treatment would mean that millions of healthy livestock would not need to be slaughtered, as took place in 2001, to combat an FMD epidemic. Treatment of the disease could replace emergency vaccination in the event of an outbreak.

The Leeds research will focus on discovering the exact mechanism the FMD virus (FMDV) uses to penetrate the cell’s membrane. The virus can only replicate and spread once it is inside a cell in the animal host, so this mechanism is a key issue in fighting the disease.

FMDV is highly infectious and spreads very quickly, but many details of the replication of the virus are still poorly understood. Because FMD is classed as a dangerous pathogen, only one laboratory in the UK – the Institute for Animal Health at Pirbright, in Surrey – is licensed to work with the actual virus. The Leeds group have overcome this obstacle by searching out another – less dangerous – virus that can be used as a model for FMDV: equine rhinitis. This discovery could also help to expand the range of research carried out on FMDV – enabling much needed advances before the UK is faced with another outbreak.

Professor David Rowlands, who is heading the research, said: “Although FMDV belongs to a family of well-known and well-studied viruses – which includes polio and the common cold – the mechanism it uses to enter cells is completely different to these viruses. However, our work has shown that equine rhinitis virus appears to use a similar mechanism to FMDV, so we’re confident it will work as an effective model for the virus.

“Research into FMD has been limited by the necessary restrictions on working with the virus, but having a model will allow research to be carried out more widely. Scientific advances come more quickly when a number of groups are working on a problem and can share ideas and explore different avenues.”

The Leeds researchers will be working closely with the Institute for Animal Health, so that any findings from equine rhinitis virus can be tested by scientists at Pirbright directly with FMDV.

If the research is successful, the next step would be to develop a treatment which could prevent the virus from infecting cells and so stop the spread of the disease. Current plans in the event of a FMD outbreak focus on culling infected animals and emergency vaccination of surrounding livestock to prevent the spread of the disease, but the Leeds team believe treatment – if it could be developed – would provide a better alternative.

“There is still no vaccination which provides life-long immunity against all strains,” explained co-researcher Professor Richard Killington. “A number of problems still exist with vaccination: it takes five days to be effective, produces FMDV antibodies in the animals and the tests which distinguish between vaccinated and infected animals have still to be validated. Vaccination is currently the only scientific alternative to mass culling, but if a treatment could be found, it would be a better option. A treatment would be immediately effective, produce no antibodies and so work more effectively to isolate any outbreak. We’re a long way from that yet – but this research is the first step on the ladder.”

The research is funded through the Biotechnology and Biological Sciences Research Council (BBSRC). The Institute for Animal Health is a BBSRC-sponsored research institute.

Media Contact

alfa

More Information:

http://www.leeds.ac.uk

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors