Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing uses for sugar-cane bagasse: biotechnology applied to the paper industry

14.11.2006
Sugar-cane bagasse is a fibrous waste-product of the sugar refining industry, along with ethanol vapour. Part of the great volume of this waste produced is recycled as a raw material for paper manufacture, but the industrial processing required for delignification and bleaching of the resulting paper pulp can be damaging for the environment.

Seeking to overcome these drawbacks, IRD researchers (UMR 180) and INRA (UMR 1163) (1), working jointly within IFR-BAIM (Biotechnologies Agro-Industrielles de Marseille), have elaborated a new bioprocess that transforms the bagasse into paper pulp and also produces an industrially useful enzyme, laccase. The process is based on the metabolism of a filamentous fungus which, when raised in culture on bagasse in the presence of ethanol, produces this enzyme.

Laccase breaks down the lignin in the cane waste, changing the latter into paper pulp. Preliminary laboratory trials show that this integrated bioprocess can be adapted to other potential fibre-yielding materials, opening up promising applications for the paper industry.

The principal raw material used for manufacturing paper pulp is wood. However, growing demand in the paper industry, at a time of dwindling forest resources, have compelled the sector to turn to other sources of raw materials, such as cereal straw, reeds, bamboo or sugar-cane bagasse. This residue, obtained after crushing of the cane, is already used as a source of paper-making fibres in producer countries (in South America and India for example, where it represents 20 % of the paper production). The industry absorbs 10% of the world bagasse production. This material offers several advantages: rapid growth of the sugar-cane plant, widespread cultivation, lower energy and bleaching chemical requirements for bagasse refining. Such a process is also a convenient means of usefully clearing this voluminous sugar refinery waste product: indeed, one tonne of refined sugar results in two tonnes of bagasse.

However, whatever the raw material used, paper pulp has to undergo processing stages of delignification and bleaching to turn it into high-strength and durable paper. In some countries the chemical processing involved still entail the use of chlorine, dangerous for both health and the environment (2).

Research scientists from the IRD and INRA studied an alternative, biologically based, solution. Laboratory experimentation enabled them to develop a non-polluting process, which at the same time yields a delignifying enzyme, laccase, from a culture of a filamentous fungus and effectively recycles the sugar-cane bagasse. Its principle lies in the specific metabolic characteristics of this fungus, Pycnoporus cinnabarinus, which produces laccase naturally. This enzyme breaks down the lignin in the fibres of bagasse used as substrate in these trials, transforming this waste product, after mechanical refining, into paper pulp. As the lignin progressively disappears, the pulp obtained becomes bleached. This pulp can be used as it is to make cardboard, but it must undergo additional treatment using hydrogen peroxide in order to yield paper for printed and writing.

P. cinnabarinus naturally sythesizes only small amounts of laccase when it grows on bagasse. It is necessary to add volatile agents such as ethanol, in order to increase production of the enzyme under these conditions (3). Ethanol was chosen as a laccase-inducer in this study because of its abundance, its low toxicity and low production cost. The research team moreover showed that if it was put into the system by forced convection at a rate of 7 g of ethanol per m3 (concentration equivalent to 3° of alcohol in the liquid phase), laccase production increased, to a maximum level (90 U per g of dry bagasse support). This amounts to 45 times the yield obtained without ethanol. Moreover, it appeared that little or no ethanol introduced was consumed by the fungus which preferentially uses other sources of carbon, resulting from the bagasse (saccharose) or put in with the substrate (maltose, yeast extracts and so on). It can therefore be recycled in the system or eliminated in a second system associated with it (4).

Replication of the fermentation trials at a larger scale, in an 18 litre bioreactor, confirmed the efficiency of the laccase production obtained using bagasse and ethanol (90 000 U per kg of dry bagasse after 30 days, representing the quantity needed for processing, without input of fungus, an extra 4 kg of bagasse). This bioprocess resulted in a 50% saving in energy consumption required for paper pulp refining, compared with that recorded for refining pulp from bagasse that had not been biologically treated. Another benefit came in the form of a 35% improvement in the paper’s mechanical characteristics (tensile strength and tear resistance) without appreciable loss of material.

The results as a whole emphasize the potential for applications of this bioprocess in the paper industry. Retrieval of the laccase at the end of the cycle, after washing and pressing of the bagasse, allows additional quantities of the substrate to be processed and, in this way, raise the profitability of the operation. Furthermore, this process can be adapted to the processing of other raw materials (wood, cereals). Investigation of the use of methanol as laccase inducer can, similarly, be envisaged as a way of recycling this compound, which constitutes one of the main pollutants emitted by the paper industry.

(1) Each of these teams is a partner of the Universities of Provence and the Mediterranean . They are grouped together within the research entity IFR 86-BAIM.

(2) In Europe, however, the paper industry is turning increasingly towards completely chlorine-free processes.

(3) Lomascolo et al.- Overproduction of laccase by a monokarryotic strain of Pycnoporus cinnabarinus, using ethanol as inducer, J. Appl. Microbiol. 2003, 94, p. 1-7.

Other research conducted by the IRD, working jointly with the UAM (Autonomous University of Mexico) of Mexico City and the ICIDEA (Cuban Institute of Research on Sugar-cane derivatives) of Cuba, have shown that a yeast, Candida utilis, can be used to produce biomass on the bagasse. It can thus provide a protein-rich feed for animals, while eliminating ethanol in the process (air pollution removal). See the scientific bulletin n°155, May 2002, on line on www.ird.fr/fr/actualites/fiches/2002/fiche155.htm.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2006/fas252.pdf

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>