Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many weather factors needed for accurate climate change predictions

08.11.2006
Current climate change impact models that consider only one weather variable, such as increasing temperature, sometimes spawn unsubstantiated doomsday predictions, according to researchers at Purdue and North Carolina universities.

Climate change studies that assess the full range of interactions among temperature, radiation, precipitation and land use can better aid humans to prepare for extreme shifts in weather patterns, the scientists report in a special issue of the journal Global and Planetary Change.

Climate change impact models often don't consider whether shifting weather will allow for sustainable agriculture, said Dev Niyogi, corresponding author of the journal article and Purdue agronomy, and earth and atmospheric sciences assistant professor.

Niyogi's team looked at weather factor interactions and their impact on two different crop plants by using data for weather and field conditions that occurred in a year considered normal for the test area. By designing a study that changed a number of variables simultaneously, the researchers found that the complex interactions of precipitation with other weather factors had the most impact on the overall health of crops and regional agricultural productivity. They concluded that lack of precipitation will have the most dramatic effect on living conditions in the future.

"Even though the question often posed involves the impact of global warming on agriculture, the real question ought to be 'What is the effect of drought?'" said Niyogi, who also is Indiana state climatologist.

Plants that are stressed due to lack of water threaten the future and sustainability of agricultural crops. Complicating the climate impact on crops is that growing demand for agricultural products also can affect weather patterns, Niyogi said.

"One basic issue we still need to understand is that population growth is a major driver for climate change," he said. "When we have more humans, we'll use more energy and use more landmass."

Land-use shifts can impact temperature and overall climate, as already evident in urban temperatures compared with rural temperatures, Niyogi said. This is a result of weather variable interactions and can be demonstrated in Niyogi's research, which involves interaction of radiation, temperature and precipitation changes.

"When temperature rises, you see more evaporation," Niyogi said. "More evaporation could lead to more clouds. More clouds might lead to changes in radiation. Changes in radiation can impact the amount of convection — the heating of the environment by the rising air. This leads to formation of rain, which can change the soil moisture and temperature again."

Niyogi and his collaborators tried to reproduce how temperature, radiation and precipitation interact and how those interactions impact two types of crops: corn and soybeans. The scientists used data from an area in North Carolina in which they had conducted previous studies. The data were from 1998, when the weather was considered normal for the area.

Niyogi's team ran 25 different climate scenarios on each of the crops in order to assess the effect of various interactions of radiation, temperature and precipitation on corn and soybeans.

The scientists found that radiation could be beneficial in a medium range because it increases the plants' photosynthesis, the process by which plants take energy from the sun to spur growth. However, too much radiation or too little radiation both lowered crop yield because they changed the efficiency of photosynthesis.

Radiation also affected how much water evaporated from the plants. This changed plants' water usage and had an impact on crop yield.

While temperature changes had a more direct effect on crops than did radiation, the researchers found that the impact was dependent on when temperature changes occurred and how long they lasted.

More refined studies need to be done on individual regions of the world to develop resource management and drought plans, according to Niyogi and his research team.

"Right now, we would be in shock if we had a real drought in Indiana," Niyogi said. "We can avoid a drought disaster depending on how we manage our resources based on climate change impacts that consider multiple interactions and vulnerability."

As the population increases, demand for agriculture products increases and regional climates change, management of resources will become even more important.

"As the region and the world brace for the necessity of higher crop yields, the role of weather becomes more critical and needs to be taken into account seriously in developing agronomic plans," Niyogi said.

The other researchers involved with this study were lead author Roberto Mera, a graduate student in Niyogi's lab; and North Carolina State University researchers Fredrick Semazzi, professor of marine, earth and atmospheric sciences and mathematics; Gregory Buol, crop science research scientist; and Gail Wilkerson, professor of crop sciences.

NASA, the National Science Foundation and the U.S. Department of Agriculture provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Dev Niyogi, (765) 494-6574, dniyogi@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>