New fuels from bacteria

“Biodiesel is an alternative energy source and a substitute for petroleum-based diesel fuel,” explains Professor Steinbüchel of the Westfälische Wilhelms-Universität in Münster. “A growing number of countries are already making biodiesel on a large scale, but the current method of production is still costly”.

“Biodiesel production depends on plant oils obtained from seeds of oilseed crops like rapeseed or soy”, explains Professor Steinbüchel. “However, production of plant oils has a huge demand of acreage which is one of the main factors limiting a more widespread use of biodiesel today. In addition, biodiesel production must compete with the production of food, which also raises some ethical concerns”.

Microdiesel, as the scientists have named it, is different from other production methods because it not only uses the same plant oils, but can also use readily available bulk plant materials or even recycled waste paper if engineering of the production strain is more advanced.

Also, it does not rely on the addition of toxic methanol from fossil resources, like many other biodiesels. The bacteria developed for use in the Microdiesel process make their own ethanol instead. This could help to keep the costs of production down and means that the fuel is made from 100% renewable resources.

“Due to the much lower price of the raw materials used in this new process, as well as their great abundance, the Microdiesel process can result in a more widespread production of biofuel at a competitive price in the future”, says Professor Steinbüchel.

There is a growing number of fuels used in cars and homes that are produced with the help of microbes. UK ministers are considering doubling the targets for the amount of biofuels sold in Britain by 2015.

Media Contact

Faye Stokes alfa

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors