Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From campfire to gas tank, Mesquite energy may be harvested for ethanol

26.06.2006
The dense mesquite-covered mid-section of Texas could provide fuel for about 400 small ethanol plants, according to one Texas Agricultural Experiment Station researcher.

Dr. Jim Ansley, Experiment Station rangeland researcher at Vernon, is determining the feasibility of developing a bio-energy industry in rural West Central Texas. The industry would be based on the harvest and use of rangeland woody plants, such as mesquite and red berry juniper, as an energy source.

"We've had so much more interest in this since gas prices went up last summer," Ansley said. "That's going to be a real driving variable. If gas prices continue to go up, I think we could very well see a first generation refinery built in Texas to handle mesquite within five years."

The vision is to build as many as 400 refineries around the state based on mesquite wood. If other woods are considered, the number could go as high as 1,000, he said.

Working with an Aberdeen, Miss. company, Ansley is studying the supply, harvest technologies, ethanol conversion rates and ecological effects of mesquite-to-ethanol production.

One ton of mesquite wood will yield about 200 gallons of ethanol, he said. An acre of the densely populated mesquite standing 10 to 12 feet tall will yield about 8 to 10 tons of wood.

A commercial refinery producing 5 million gallons of ethanol per year will require about 30,000 acres to sustain it, an approximate four- to five-mile radius if the refinery is located near the middle of the mesquite stand, Ansley said.

"The thing that will make this fail is if people think a bigger refinery in the big cities is better," he said. "That's where it will fail. The transport costs to get the feedstock to the refinery will kill you."

Building smaller refineries in the rural regions where the mesquite is located is the key to making this work, he said. Each refinery would support about 30 jobs and enhance rural economies.

"One aspect of mesquite that makes it an attractive renewable fuel is once the above ground growth has been harvested, it sprouts back pretty vigorously," Ansley said. "We're looking at how long it takes before it can be economically harvested again."

A State Energy Conservation Office grant has allowed his team to study harvest of different regrowth rates, as well as develop a mechanized system of harvesting mesquite.

Working with private cooperators, Ansley has helped design a harvester that is in the patent-pending stages. He hopes to have it ready for demonstration at an Oct. 5 field day at the Vernon station.

"We've run some trials with it and we think we have a technique that is workable for gathering this mesquite wood," he said. "That has not been done before."

Ranchers have long been looking for a way to utilize the mesquite growing wild on their pasturelands, but until now, nothing has looked economical, Ansley said.

Mesquite could be used in a wood-fired power plant, but "we think there's much greater potential with ethanol."

A patented process to convert the wood into ethanol is being tested in a prototype plant in Mississippi, Ansley said.

In Texas, the prime area to harvest mesquite is the middle third of the state: a band bordered on the west by a line from Childress to Del Rio and on the east from Decatur to Austin.

"We're talking small travel distance from wood source to these refineries, about 4 to 5 miles," Ansley said. "They would process about 5 million gallons per year of ethanol, which would require about 30,000 acres. Only about 10 percent would be harvested each year, with about 10 years needed for regrowth."

Livestock and wildlife operations should co-exist with a harvest area and be improved with enhanced grass growth and patterned harvest of mesquite, he said.

"The economics are good now," Ansley said. "It just looks tremendously profitable to me today."

The largest expense – building a refinery – is expected to be about $8 million with a profitability of $2 million a year after expenses, he said.

"We're in the process of trying to measure how much energy it takes to harvest mesquite in the field," Ansley said. "That's probably our least researched area. Now that we have this machine constructed, we can start working on that."

Researchers will study different sizes and densities of mesquite and look at the time needed to harvest and the fuel used by the machinery and factor that into the total cost per acre.

"Right now we're estimating $300 per acre, but even if the cost was three times that, we'd still show a profit," Ansley said. "Honestly, I don't know why we haven't done this already, when I look at the numbers."

Dr. Jim Ansley | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>