Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful Algal Blooms monitored from space in Chile

13.06.2006
Chile is currently the world’s largest producer of farmed salmon and has a burgeoning mussel culture industry that is supplying a growing world market. However, the country’s marine aquaculture sector is vulnerable to Harmful Algal Blooms, which occur when some algae species producing poisons bloom rapidly in water, causing physical or biochemical damage to fish and shellfish.

Early detection of Harmful Algal Blooms (HABs) allows fish farmers to make timely key decisions in order to minimise the damage to aquaculture. To aid in this effort, a team led by Hatfield Consultants Ltd. (Hatfield), under the ESA-funded Chilean Aquaculture Project (CAP), has implemented an early warning service based on Earth Observation (EO) data, which delivers forecasts of potential HABs to aquaculture companies via a customised Internet portal.

HABs are a natural phenomenon that have increased in frequency over the last 30 years, causing millions of Euros worth of annual losses to the 360 fish farms found in the southern region of Chile. They deplete the concentration of oxygen in sea water, potentially killing larger caged fish such as salmon that cannot flee the affected area.

In the case of shellfish, such as mussels, toxins from the blooms accumulate in their body tissues and pose serious health risks for humans when consumed. For instance, in 2002 an HAB outbreak in Chile was responsible for 73 paralytic poisonings and two deaths. In 2004, more than 1500 cases of poisonings occurred resulting in an estimated 30 million Euro yearly loss. And in 2005, more than 10 000 cases were document, including one death.

Just like plants on land, algae employ green-pigmented chlorophyll for photosynthesis — the process of turning sunlight into chemical energy. The chlorophyll collectively tints the colour of the surrounding water, providing a means of detecting these tiny organisms from space with dedicated 'ocean colour' sensors onboard satellites.

The CAP project utilises a combination of near real-time EO data, such as chlorophyll-a pigment concentration, secchi transparency, suspended matter and sea surface temperature, derived from the MERIS instrument onboard ESA’s Envisat satellite and the MODIS instrument onboard NASA’s Aqua satellite and in situ water monitoring to monitor the Southern Ocean off the coast of Chile.

A hydrodynamic model, established and validated through the project, is also used to characterise the water circulation patterns in the major aquaculture area in southern Chile.

Aquaculture has become a capital-intensive industry in Chile, worth nearly 1 billion Euros a year with direct and indirect benefits for employment and other industries. The aquaculture industry in Chile and internationally has expressed great interest in the products and services developed under the CAP project. In particular, the HAB early warning service has been tested by Mainstream Chile, part of the Norwegian holding company CERMAQ, a world leader in salmon production.

Mainstream Group Development Manager Francisco Puga said: “The benefits of the CAP project are directly related to the operation of our company. The environmental monitoring and HAB detection is part of our daily operation procedures. Also, historical environmental information supports our strategic decisions for farm site location.

"To obtain the amount of information covered with the EO data, alternative methods will be of considerable higher cost. With in situ measurements you cannot produce a gradient map as obtained with EO images. The value of this information is the area and resolution obtained in a single didactic image."

Last month, the CAP project was presented at the AQUA2006 event organised by the World Aquaculture Society in Florence, Italy, triggering a lot of interest for EO-based information service in the aquaculture industry.

The CAP team, including Canada’s Hatfield, France’s ACRI, Chile’s Mainstream Chile and Italy’s AVS, has been supported within the framework of ESA’s Earth Observation Market Development programme.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMUS5AATME_economy_0.html

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>