Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique soybean lines hold promise for producing allergy-free soybeans

08.05.2006
Researchers have isolated two Chinese soybean lines that grow without the primary protein linked to soy allergies in children and adults. The two lines already are adapted to Illinois-like conditions and will be given away to breeders seeking to produce new varieties of allergy-free soybeans without genetic engineering.

Crop scientists at the University of Illinois at Urbana-Champaign and the USDA-Agricultural Research Service’s Donald Danforth Plant Science Center in St. Louis screened more than 16,000 soybean lines kept in the USDA’s National Soybean Germplasm Collection. The findings will appear later this year in the journal Crop Science.

The two soybean lines (PI 567476 and PI 603570A) contain virtually identical genetic mutations that do not contain the leading allergy-causing P34 protein, which consists of 379 amino acids, said Theodore Hymowitz, emeritus professor of plant genetics in the crop sciences department at the U. of I.

"We are releasing this information with no patents so that companies and breeders involved with soybeans can incorporate these two lines as quickly as possible," Hymowitz said. Companies in Japan, Canada and across the United States have been following the research effort, he added.

The research, which was funded primarily by the Illinois-Missouri Biotechnology Alliance, went through two stages.

First, using a specially developed immunochemistry approach, Hymowitz’s post-doctoral assistant Leina M. Joseph examined 100 lines of soybeans per day for nine months from the UI-based collection. Seeds were crushed, treated and placed on a membrane for screening. A second screening using stronger antibodies and protein gels was done to confirm the absence of P34 in the two domestic lines, Joseph said.

After the two lines were isolated, seeds were sent to the Danforth Center for additional molecular analysis to determine why P34 was absent. Six identical genetic mutations were found in each, indicating the two lines may be related, Hymowitz said.

"The lack of the protein was confirmed by more-detailed two-dimensional protein assays," said Eliot M. Herman, a lead scientist at Danforth who probed the seeds with post-doctoral researcher Monica A. Schmidt. "We then isolated the gene responsible for the lesion, and we found there was a single significant change in the gene’s sequence that likely produced a protein which could not be made as a stable product."

Herman discovered P34 in the early 1990s and in 2003 had successfully used a gene-silencing technique to create a soybean line in which P34 was "knocked out." However, because of public resistance to genetically modified products researchers have been seeking a more traditional approach. Because the newly identified lines occur naturally, they can be successfully crossed into other soybean lines "without any biotechnology-derived component," the researchers noted.

"Soybeans are slowly but surely increasingly being used in the foods we eat, and with that we are noticing an increase in the number of children and adults that have allergies to soybeans," Hymowitz said.

Currently, 6 percent to 8 percent of children are allergic to soy-based products, including infant formulas, while 2 percent of adults have had allergic reactions, which range from harmless skin reactions and gastrointestinal irritation to more serious facial swelling, shortness of breath, difficulty swallowing and fainting.

Avoiding soy products is becoming more difficult because of soy’s use as fillers and components of many menu items. While people can read labels before preparing meals at home, avoiding soy at restaurants isn’t as easy, Hymowitz said.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>