Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists call on farmers to help prevent spread of severe animal disease

05.04.2006
Scientists studying the potentially devastating animal disease, bluetongue, are calling for the assistance of farmers to help them understand the distribution of the potential carriers, certain species of Culicoides biting midges, across the UK.

Although bluetongue has not been recorded in the UK, the last eight years have seen it spread throughout much of southern and eastern Europe and climate change is allowing it to extend into more northerly areas than ever before. Recent outbreaks have seen the virus that causes bluetongue being carried by different species of midge which are known to be prevalent in the UK. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Defra are calling for farmers to let them set up light traps to run overnight on agricultural land around the country. The biting midges caught in the traps can then be analysed to identify their species and to determine their capacity to spread bluetongue virus.

Dr Simon Carpenter from the BBSRC-sponsored Institute for Animal Health (IAH), explained: “We want to better understand both the distribution of biting midges and their seasonal abundance. Using light traps to understand where the hotspots of midge activity are, and combining this with information from weather satellites and climate change models, we will be able to predict the areas of the UK and times of year most at threat from bluetongue if it does arrive here.”

Bluetongue is caused by a virus that can reproduce in all species of ruminant. This means that animals unaffected by the disease, such as cattle, can be covert carriers of the virus, infecting more livestock. In its severe form bluetongue most often affects sheep and some species of deer and can result in respiratory problems, swelling, fever and death. The research team at IAH are world leaders in understanding bluetongue and were the first to highlight its recent spread into southern Europe.

Temperature and rainfall are key variables in the ability of the carrier midges to breed and spread the virus. Below about 8-10 degrees Celsius development of adult midges is inhibited but on warm summer nights (18-29 degrees Celsius) the midges are much more active. Studies have even found the virus can lay dormant for up to a month in midges when the temperature falls below 10 degrees Celsius, becoming active when temperatures rise. If winters become shorter with global warming the midges and hence the virus may not be killed off. Midges require semi-aquatic breeding sites so rainfall is important in understanding disease transmission.

The team want to use the data gathered from farms as the first step to advising livestock farmers on the most effective preventative methods. Professor Philip Mellor, also from IAH, said: “If we can establish when during summer and autumn and under what weather conditions midge populations are best able to spread bluetongue virus we can use satellite images to predict which farms are most at risk and when they are most at risk. We are also analysing how insecticide usage or changing the management of livestock could help to prevent the spread of the virus by preventing animals being bitten by midges in the field.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>