Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered genetic mechanism in poultry can provide more insights to complex diseases

14.03.2006
Scientists from Uppsala University, the Swedish University of Agricultural Sciences, and the US have identified a genetic mechanism that regulates growth in chickens.

The study is based on two chicken selection lines, where one is bred for high growth and the other one for low. The researchers show that a network of four interacting genes explains half of the difference in body weight between the lines. The results may be of great significance for genetic studies of complex diseases such as obesity and diabetes. The study is being published ahead of print on the home page of Nature Genetics on March 12.

Despite many years of intensive research, we still know little about the genetics behind complex diseases like diabetes, obesity, and allergies. Three research groups from Uppsala and the US now describe a new genetic mechanism that sheds new light on the genetic background to complex disorders and other traits that are affected by both genes and environment.

The scientists have made use of a unique poultry population to provide a new answer to a question that has haunted researchers since the early 20th century: what are the genetic mechanisms that allow breeders to create new populations where every individual is more extreme than the most extreme individual in the population that they started breeding from?

Since 1957 Paul Siegel, at Virginia Tech in the US, has studied the biological effects of selection for extreme body weight in chickens. Starting from a homogeneous poultry population, he has bred two lines of chickens, one for high body weight and one for low body weight. In the high line, the heaviest animals were chosen to be the parents of the next generation, and in the low line the lightest individuals were chosen. Today the high line chickens weigh eight times as much as the low line chickens at eight weeks of age (see picture).

- This is one of the greatest responses to selection ever recorded in vertebrates and is considerably greater than disrupting the function of any of the individual genes that are known to have the largest impact on growth, says Leif Andersson, who initiated the genetic studies of poultry lines in collaboration with Paul Siegel.

The scientists have now managed to find a network of four coordinated genes that explains half of the difference between these two poultry lines.

- We have now analysed the data using a new method that takes into consideration how genes interact. Using this method we can explain considerably more of the differences between the lines than by using traditional methods. The major effects on growth are found only in those individuals who have certain specific combinations of gene variants for these four genes, says Örjan Carlborg, coordinator of the study.

This is the first time experimental data have successfully provided a mechanistic explanation for how interaction between genes can affect how populations are altered by natural or artificial selection.

- The results are not surprising, since it has long been suspected that interaction is important in the regulation of most biological traits, but this type of mechanism was not expected to play such a dominant role, says Örjan Carlborg.

The two poultry lines differ also in regard to other features than growth, such as appetite, obesity, and immune response. The high-line chickens are compulsive eaters, whereas the low-line chickens are anorectic; the high-line chickens are fat while the low-line chickens are slender; and the high line also has a weaker immune response than the low line.

- This is why we expect that this animal model will be extremely interesting for finding out whether the mechanism we have discovered might also underlie the regulation of the medically interesting metabolic and immmunological traits, including regulation of appetite, obesity, and immune response. This can provide new knowledge that may ultimately lead to improved drugs for many of our complex diseases, says Örjan Carlborg.

The findings are being published on the Nature Genetics home page on March 12. The authors are Örjan Carlborg, Lina Jacobsson, Per Åhgren, Paul Siegel, and Leif Andersson.

Linda Nohrstedt | alfa
Further information:
http://www.nature.com/ng/index.html
http://www.uu.se

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>