Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant genes identified that can form the basis for crops that are better adapted to environmental conditions

26.10.2005


Roots are crucial for the development of strong, healthy crops. But until recently, exactly which genes are involved in the development of roots was still a mystery. Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University have now analyzed a complete plant genome in order to identify the genes that are essential for the formation of capillary roots. For the first time, they are unraveling the genetic basis for the branching of the root system - the key to a plant’s further growth and development.



The mystery of capillary root formation

Root systems absorb nutrients and anchor plants in the soil - two crucial functions for a plant’s growth and further development. The formation of capillary roots is vital to the root system and determines how much water and minerals a plant can absorb. As early as 1937, scientists knew that it takes only 4 months for a single rye plant to produce some 13 million individual roots! But up to now, the genetic basis of this complex process has remained unexplained.


The production of new roots is a complex combination of cell division, growth and differentiation. A specialized layer of cells in the root - the pericycle cells - must be activated to start dividing again. Therefore, it is also crucial that the cell cycle - the process that directs cell division - be under optimal control. Although the precise factors that underlie these processes and how they work together are virtually unknown, it has been quite clear that an enormous number of factors are involved.

Tom Beeckman and his team in the VIB Department of Plant Systems Biology took on the challenge of identifying all the genes that are involved in the process of capillary root formation. They used a simple model plant for this study: the Mouse-ear Cress or Arabidopsis thaliana.

Large-scale research identifies genes involved in capillary root formation

First of all, the researchers developed a special method - the Lateral Root-Inducible System (LRIS) - with which they are able to have capillary roots grow in a controlled manner. They studied all the genes that are connected with the formation of capillary roots and compared them with the complete genome of a plant that is unable to form capillary roots. By analyzing these large data sets in detail, the Ghent team discovered which genes are crucial for the formation of new capillary roots. For this part of the project, they used micro-array technology, with which thousands of samples can be studied simultaneously.

The development of capillary roots is important for sustainable agriculture

Capillary root formation is controlled by both internal and external signals. This ensures that the root system adapts itself to changes in the soil - a very heterogeneous and changeable environment. From the agricultural point of view, the branching of the root is essential because roots are responsible for helping plants adapt to adverse environmental conditions. A better understanding of capillary root formation will enable the cultivation of crops that absorb water and minerals more efficiently. An important step toward a more environment-friendly, sustainable agriculture in a world whose population is growing while the land available for agriculture is diminishing.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>