Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers develop tests for devastating cattle disease

30.08.2005


More rapid and accurate test results may translate to better quality products



Researchers at the University of Minnesota, working in collaboration with scientists at the USDA, have used genomic information to develop tests that can rapidly detect and differentiate the bacteria that causes Johne’s disease, a chronic wasting disease found in cattle and other ruminant animals such as sheep, goats and deer. This research, scheduled to be published in the Aug. 30 issue of the Proceedings of the National Academy of Sciences, also provides the foundation for a better understanding of the Johne’s disease process and the design of vaccines to prevent infection.

Johne’s disease is devastating to the United States dairy industry, costing about $200 million per year due to reduced milk production. Estimates indicate that the disease is present in approximately 25 percent of Minnesota’s dairy herds. Because the bacterium that causes Johne’s disease, Mycobacterium avium subspecies paratuberculosis, is slow growing in the laboratory, previous tests often took between 6 and 18 weeks to process. The current study shows how genomic information may be used to develop highly specific, sensitive, and rapid tests for the detection of infected animals.


These new tests, which enable detection of the bacterium in fecal matter or milk, can be completed in 72 hours or less with an accuracy that was not possible without knowledge of the complete genome of the bacterium. Since animals shed the bacteria in their milk, faster diagnosis will likely help monitor and improve the quality of dairy foods.

"Since the results of this new test are available much sooner, infected animals can be identified and isolated more quickly, thereby providing an opportunity to minimize economic losses to the herd, and breaking the chain of transmission from animal to animal," said Vivek Kapur, BVSc., Ph.D., principal investigator, faculty member of the University’s Medical School and College of Veterinary Medicine, and director of the Biomedical Genomics Center. In 2003, Kapur and his colleagues at the University of Minnesota were also awarded one of the largest research grants by the USDA to form a national consortium to study Johne’s disease in cattle.

Mycobacterium avium subspecies paratuberculosis is also implicated as a factor in Crohn’s disease, an inflammatory bowel disease in humans. Infection with this bacterium in humans and all animals is generally believed to occur at an early age, with clinical manifestations of the disease only showing up after several years. In the future, researchers are likely to be able to use this information to work on a test to detect these bacteria in blood or tissue of patients with Crohn’s disease and ulcerative colitis.

"This research both advances knowledge of the basic science issues surrounding the disease as well as applies that knowledge for immediate benefits to animal and potentially human, health," said Sagarika Kanjilal, associate professor of medicine, and a co-author of the paper.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>